Solving A Nice log Equation

Поділитися
Вставка
  • Опубліковано 4 гру 2024

КОМЕНТАРІ • 7

  • @NirDagan
    @NirDagan 2 дні тому +1

    Actually, in the second method you could use the same substitution as in the first method

  • @ManojkantSamal
    @ManojkantSamal 2 дні тому +2

    ^=read as the power
    *=read as square root
    As per question
    X^(1+logx)=100
    (X^1)×(x^logx)=100
    According to Lambert w
    X^(logx)=x
    So,
    X×x=100
    X^2=100
    X=*(100)=±10

    • @blop2735
      @blop2735 18 годин тому

      You can discard the -10 solution because you cannot take the log of a negative

  • @trojanleo123
    @trojanleo123 3 дні тому

    x = { 10 , 1/100 }

  • @phill3986
    @phill3986 3 дні тому

    👍😀✌️👏😎👏✌️😀👍

  • @gelbkehlchen
    @gelbkehlchen 2 дні тому

    Solution:
    x^[1+lg(x)] = 100 |lg() ⟹
    [1+lg(x)]*lg(x) = 2 |-2 ⟹
    lg²(x)+lg(x)-2 = 0 | with u = lg(x) ⟹
    u²+u-2 = 0 |p-q-formula ⟹
    u1/2 = -1/2±√(1/4+2) = -1/2±3/2 ⟹
    u1 = -1/2+3/2 = 1 and u2 = -1/2-3/2 = -2
    1st case: lg(x1) = u1 = 1 |10^() ⟹ x1 = 10
    2nd case: lg(x2) = u2 = -2 |10^() ⟹ x2 = 1/100