Solving A Quartic

Поділитися
Вставка
  • Опубліковано 2 гру 2024

КОМЕНТАРІ •

  • @GillesF31
    @GillesF31 9 днів тому +5

    I did this way (step by step, a long way) ...
    x⁵ = (x - 1)⁵

    (x - 1)⁵ = x⁵

    ((x - 1)⁵)/x⁵ = x⁵/ x⁵

    ((x - 1)/x)⁵ = 1

    set k = (x - 1)/x

    k⁵ = 1

    ---

    /// "roots of unity" of k⁵ = 1 (recall):

    // note:

    • argument: n·(π/5) (n = [2..10] by 2)

    • module: 1 (for each)

    • polar form: 1·e^(i·n·(π/5)) = e^(i·n·(π/5))

    // computation:

    • root #1 (of unity): e^(i·(2π/5)) = cos(2π/5) + i·sin(2π/5) ≈ 0.309 + 0.951·i

    • root #2 (of unity): e^(i·(4π/5)) = cos(4π/5) + i·sin(4π/5) ≈ -0.809 + 0.587·i

    • root #3 (of unity): e^(i·(6π/5)) = cos(6π/5) + i·sin(6π/5) ≈ -0.809 - 0.587·i

    • root #4 (of unity): e^(i·(8π/5)) = cos(8π/5) + i·sin(8π/5) ≈ 0.309 - 0.951·i

    • root #5 (of unity): e^(i·2π) = 1

    ---

    /// case: (x - 1)/x = 0.309 + 0.951·i

    (x - 1)/x = 0.309 + 0.951·i

    x/x - 1/x = 0.309 + 0.951·i

    1 - 1/x = 0.309 + 0.951·i

    1/x = 1 - 0.309 + 0.951·i

    recall: 1/a = b => a = 1/b

    x = 1/(1 - 0.309 + 0.951·i)

    x = 1/(0.691 + 0.951·i)

    recall:

    ||
    || division between 2 complex numbers:
    ||
    || a + bi (a + bi)·(c - di) (ac + bd) + i·(bc - ad)
    || -------- = --------------------- = --------------------------------
    || c + di (c + di)·(c - di) c² + d²
    ||
    x = (1 + 0·i)/(0.691 + 0.951·i)

    note:

    • a = 1

    • b = 0

    • c = 0.691

    • d = 0.951

    x = [(ac + bd) + i·(bc - ad)]/(c² + d²)
    x = [(1·0.691 + 0·0.951) + i·(0·0.691 - 1·0.951)]/(0.691² + 0.951²)

    ■ x ≈ 0.5 - 0.688·i

    ---
    /// case: (x - 1)/x = -0.809 + 0.587·i

    (x - 1)/x = -0.809 + 0.587·i

    x/x - 1/x = -0.809 + 0.587·i

    1 - 1/x = -0.809 + 0.587·i

    1/x = 1 + 0.809 + 0.587·i

    recall: 1/a = b => a = 1/b

    x = 1/(1 + 0.809 + 0.587·i)

    x = 1/(1.809 + 0.587·i)

    recall:

    ||
    || division between 2 complex numbers:
    ||
    || a + bi (a + bi)·(c - di) (ac + bd) + i·(bc - ad)
    || -------- = --------------------- = ---------------------------------
    || c + di (c + di)·(c - di) c² + d²
    ||
    x = (1 + 0·i)/(1.809 + 0.587·i)

    note:

    • a = 1

    • b = 0

    • c = 1.809

    • d = 0.587

    x = [(ac + bd) + i·(bc - ad)]/(c² + d²)
    x = [(1·1.809 + 0·0.587) + i·(0·1.809 - 1·0.587)]/(1.809² + 0.587²)

    ■ x ≈ 0.5 - 0.162·i

    ---

    /// case: (x - 1)/x = -0.809 - 0.587·i

    SAME REASONING AS PREVIOUSLY

    x = [(1·1.809 - 0·0.587) + i·(0·1.809 + 1·0.587)]/(1.809² + 0.587²)

    ■ x ≈ 0.5 + 0.162·i

    ---

    /// case: (x - 1)/x = 0.309 - 0.951·i

    SAME REASONING AS PREVIOUSLY

    x = [(1·0.691 + 0·0.951) + i·(0·0.691 + 1·0.951)]/(0.691² + 0.951²)

    ■ x ≈ 0.5 + 0.688·i
    ---

    /// case: (x - 1)/x = 1

    (x - 1)/x = 1

    x/x - 1/x = 1

    1 - 1/x = 1

    1/x = 1 - 1

    1/x = 0

    NO SOLUTION !

    ---

    /// final results:

    ■ root #1: x ≈ 0.5 - 0.688·i
    ■ root #2: x ≈ 0.5 - 0.162·i
    ■ root #3: x ≈ 0.5 + 0.162·i
    ■ root #4: x ≈ 0.5 + 0.688·i
    🙂

  • @black_eagle
    @black_eagle 10 днів тому +1

    x^5 = (x-1)^5 => ((x-1)/x)^5 = 1 or u^5 =1 where u = (x-1)/x
    u^5 = e^(i*2pi*n) => u = e^(i*2pi*n/5), n = 0, 1, 2, 3, 4
    u=(x-1)/x = 1 - 1/x => x = 1/(1-u) = 1/(1 - e^(i*2pi*n/5)), n = 1, 2, 3, 4.
    Expanding the denominator and putting in standard form gives x = 1/2 + i * 1/2 * sin(2pi*n/5) / (1 - cos(2pi*n/5))
    You can substitute the exact values of these sines and cosines and simplify but I just left it like this.

  • @shannonmcdonald7584
    @shannonmcdonald7584 8 днів тому +1

    Please remind me: when we move a curve in the positive direction along the x axis, why do we subtract the number of places instead of adding them?

    • @CalculusCentral
      @CalculusCentral 8 днів тому +1

      For example when you add 1 (say for the graph (x+1)^2), you can essentially think of the entire x-axis moving one to the left as when you plug in -1 it becomes 0^2, when you plug in 1 it becomes 2^2, and so on. So now x = -1 takes the place of what x = 0 would be in the unchanged x^2 graph.
      And it works the other way, when we take one from the graph (e.g. (x-1)^2). You can think of it as the whole x-axis moving to the right by one unit as if you plug in 0, it becomes (-1)^2, plug in 1, it becomes 0^2. So now x = 1 takes the place of what x = 0 would be in the x^2 graph.
      Hope this helps!

  • @danielpraise2146
    @danielpraise2146 10 днів тому +1

    x⁵ = (x-1)⁵
    I would like to let
    (x-1) = y
    x - y = 1
    x⁵ - y⁵ = 0
    x² + y² = 1 + 2xy
    x³ - y³ = (1 + 3xy)
    (x³-y³)(x²+y²) = (1+2xy)(1+3xy)
    x⁵ + x³y² - y³x² - y⁵ = 1 + 3xy + 2xy + 6(xy)²
    x⁵ - y⁵ + x²y²(x-y) = 1+5xy + (6xy)²
    Let xy = a
    5a² + 5a + 1 = 0
    a = -5 ± √(25 - 20)/10
    a = -5 ± √5/10
    x - y = 1
    xy = (-5 ± √5)/10
    Solving the system u get the value of x

  • @ignaciosavi7739
    @ignaciosavi7739 7 днів тому

    No Solutions in real numbers my first guess

  • @martin6.6
    @martin6.6 10 днів тому +6

    Isn't it a quintic? 😅

    • @Joe-il8cu
      @Joe-il8cu 10 днів тому +6

      Kind of but the ^5 term cancels off immediately so you’re left with a quartic

    • @Qermaq
      @Qermaq 9 днів тому

      It's a decapitated quintic, with a = 0 because the x^5 cancels out. So, if a = 0, it's not technically a quintic, it just looks like one till you mess it up.

  • @Don-Ensley
    @Don-Ensley 10 днів тому

    problem
    x⁵ = (x-1)⁵
    x⁵ - (x-1)⁵ = 0
    [x-(x-1)][x⁴+(x-1)x³+(x-1)²x²+(x-1)³x+(x-1)⁴]=0
    x⁴+(x-1)x³+(x-1)²x²+(x-1)³x+(x-1)⁴=0
    This expands to
    5x⁴-10x³ +10x²-5x+1 = 0
    Let
    x= y+1/2
    5y⁴ +(5/2) y² +(1/16) = 0
    80 y⁴ +40y² +1=0
    y² = (-5± 2√5)/20
    Two solutions for y²
    y² =-(√5/20) ( √5 -2 )
    y² =-(√5/20) ( √5 + 2 )
    Solutions for y
    y = -i (√5/2) √(√5-2)
    y = i (√5/2) √(√5-2)
    y = -i (√5/2) √(√5+2)
    y = i (√5/2) √(√5+2)
    Back substitution
    x = y + 1/2
    x solutions
    x = (1/2)-i (√5/2) √(√5-2)
    x = (1/2)+i (√5/2) √(√5-2)
    x = (1/2)-i (√5/2) √(√5+2)
    x = (1/2)+i (√5/2) √(√5+2)
    answer
    x ∈ { (1/2) - i (√5/2) √(√5+2),
    (1/2) - i (√5/2) √(√5-2),
    (1/2) + i (√5/2) √(√5-2),
    (1/2) + i (√5/2) √(√5+2) }