Can We Evaluate A Nice Radical

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 11

  • @mathstuff-n5u
    @mathstuff-n5u 3 дні тому

    thanks today i manage to generalize formula for equation : x^3+bx+c = 0 using same idea

  • @MichaelRothwell1
    @MichaelRothwell1 2 дні тому

    Very elegant solution of the cubic x³-x-1=0 using Cardano's method!
    We can easily use this method to find all three roots of the cubic.
    Having found a³=(9+√(69))/18, then from a³+b³=1 we get b³=(9-√(69))/18.
    For each possible value of a, we get the corresponding value of b by choosing the cube roots so their product is real, as we have ab=1/3.
    The result is:
    a=³√((9+√(69))/18), b=³√((9-√(69))/18) (real solutions)
    a=³√((9+√(69))/18)ω, b=³√((9-√(69))/18)ω²,
    a=³√((9+√(69))/18)ω², b=³√((9-√(69))/18)ω
    where ω=cis(2π/3)=-1/2+√3/2i, the complex primitive cube root of 1, with the solutions being a+b in each case.
    Convergence of the sequence ³√1, ³√(1+³√(1)), ³√(1+³√(1+³√(1))),... is straightforward to prove: it is easy to show by induction both that the sequence is increasing, and that each term is less than 2, so the result follows by the monotone convergence theorem.

  • @alexandermorozov2248
    @alexandermorozov2248 4 дні тому

    Nice solution! 👍

  • @phill3986
    @phill3986 2 дні тому

    👍😀✌️👏😎👏✌️😀👍

  • @ZIN24031980
    @ZIN24031980 4 дні тому

    Nice solution, I'd liked it.

  • @GuiveChafai
    @GuiveChafai 4 дні тому

    you did not Prove that the limit exists. You assumed that the limit exists and then calculated.

    • @hitman6540
      @hitman6540 4 дні тому

      What! There isn't a limit in this video bro

    • @MichaelRothwell1
      @MichaelRothwell1 2 дні тому

      Indeed. Please see my comment for a sketch of the proof of convergence.