This Russian Math Olympiad Problem Will Blow Your Mind - Learn the Secret Trick! | 2 Methods

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 12

  • @harikatragadda
    @harikatragadda 5 місяців тому +1

    Rotate ∆ACD clockwise by 140° about C.
    This makes an Isosceles ∆ACE with ∠E= 20° and ∠DAE= 80°, making ∆AED Isosceles.
    Hence, AE = DE = X+Y, and this in turn makes ∆BAE Isosceles.
    Therefore, θ= ∠E = 20°

  • @ludmilaivanova1603
    @ludmilaivanova1603 4 місяці тому

    Extend AC by x. AE=y+x. Connect E and D. Triangle DCE is isosceles, Angles E and D in that are =20degrees. Triangles ABD and ADE are equal: AD is common, AB=AE, angle ADB-100 degrees= angle ADE. Therefore, ANgle ABD=ANgle AED = 20.

  • @Irtsak
    @Irtsak 6 місяців тому

    I liked the first solution, which I ended up with, after many adventures.😊
    In geometry you have to use your *observation and intuition* .
    AB=x+y and AC=y . *AB>AC* (cause x+y>y).
    In triangle ADC : ∠DAC=60° < 80°=∠ADC => DC *x

  • @michaeldoerr5810
    @michaeldoerr5810 6 місяців тому

    I actually understood both methods and I do think that both methods are reasonably intricate. I also think that the secret trick making sure that if the angle can be derived and computed via double angle identity, then you can prove that the triangle has equal sides ans equal angles. And vice versa.

  • @holyshit922
    @holyshit922 5 місяців тому

    It can be done using sine law
    x/sin(60) = y/sin(80)
    x/y = sin(60)/sin(80)
    (x+y)/sin(40) = y/sin(theta)
    (x+y)/y = sin(40)/sin(theta)
    x/y + 1 = sin(40)/sin(theta)
    sin(60)/sin(80) + 1 = sin(40)/sin(theta)
    (sin(60) + sin(80))/sin(80) = sin(40)/sin(theta)
    sin(theta)/sin(40) = sin(80)/(sin(60) + sin(80))
    sin(theta) = sin(80)sin(40)/(sin(60) + sin(80))
    sin(theta) = sin(80)sin(40)/(2sin(70)cos(10))
    sin(theta) = sin(80)sin(40)/(2sin(70)sin(80))
    sin(theta) = sin(40)/(2sin(70))
    sin(theta) = sin(40)/(2cos(20))
    sin(theta) = 2sin(20)cos(20)/(2cos(20))
    sin(theta) = sin(20) , but we know that theta must be acute angle so the only one solution is
    theta = 20 degrees

  • @johnbrennan3372
    @johnbrennan3372 6 місяців тому +1

    Very interesting. Method one really nice

  • @phungcanhngo
    @phungcanhngo 6 місяців тому +2

    Thank you professor .

    • @aninditaroydebbarman8125
      @aninditaroydebbarman8125 6 місяців тому +1

      The boy who is making this video has really a professor mind 🎉🎉🎉

  • @professorrogeriocesar
    @professorrogeriocesar 6 місяців тому

    Difícil, porém, bela questão. :)

  • @comdo777
    @comdo777 6 місяців тому +1

    asnwer=65 isit her ㅠ.ㅠ

  • @zdrastvutye
    @zdrastvutye 4 місяці тому

    there is no isosceles triangle, just the sum of angles
    and what the description tells:
    10 print "mathbooster-this russian math olmypiad problem will blow your mind"
    20 w1=80:w2=40:lx=1:ly=sin(rad(w1))/sin(rad(180-w1-w2))
    30 swth=ly*sin(rad(w2))/(lx+ly):if abs(swth)>1 then stop
    40 wth=deg(asn(swth)):print wth:dim x(1,2),y(1,2):lad=ly*sin(rad(w2))/sin(rad(w1))
    50 wbac=180-wth-w2:dlbc=2*(lx+ly)*ly*cos(rad(wbac))
    60 lbc=sqr((lx+ly)^2+ly^2-dlbc):x(0,0)=0:y(0,0)=0
    70 x(0,1)=lbc-lad*cos(rad(w1))-ly*cos(rad(w2)):y(0,1)=0:x(0,2)=(lx+ly)*cos(rad(wth))
    80 y(0,2)=(lx+ly)*sin(rad(wth)):x(1,0)=x(0,1):y(1,0)=0:x(1,1)=lbc:y(1,1)=0
    90 x(1,2)=lbc-ly*cos(rad(w2)):y(1,2)=ly*sin(rad(w2)):fe=(x(1,2)-x(0,2))/x(1,2)*100
    100 print "der fehler=";fe;"%":masx=1200/lbc:masy=850/y(0,2)
    110 if masx
    run in bbcbasic sdl and hit ctrl tab to copy from the results window.