Math Olympiad | A Nice Algebra Problem | How to solve for X and Y in this problem ?

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 221

  • @knotwilg3596
    @knotwilg3596 8 місяців тому +28

    The elementary way to solve this is reducing the higher powers to lower powers by substitution.
    Since x^5+y^5 = (x+y) (x^4-x^3y+x^2y^2-xy^3+y^4) => x^4-x^3y+x^2y^2-xy^3+y^4 = 116
    At the same time (x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4 = 256
    Subtracting gives 5x^3y+5x^2y^2+5xy^3 = 140 => xy (x²+xy+y²) = 28
    We further reduce x²+xy+y² = (x+y)² - xy = 16-xy
    This gives xy (16-xy) = 28 and this is a quadratic equation in xy with solutions 2 and 14
    This gives 2 sets of equations (x+y=4, xy = 2) and (x+y=4, xy=14) which we can transform into quadratic equations by substitution
    Those give solutions (2+v2, 2-v2) and (2+2i v10, 2-2i v10) where the latter exists in the complex field.
    Even if you show this step by step, this can be done in 5 minutes. You are math literate but you take unnecessary long roads to the solution.

    • @jiqin4298
      @jiqin4298 7 місяців тому +3

      this is the real method that the question setter want the solvers to find out, not
      the way in video

    • @THESURAFELB
      @THESURAFELB 3 місяці тому

      Thanks🔔

    • @BP-gn2cl
      @BP-gn2cl 3 місяці тому

      Correct

    • @sparkgamer6625
      @sparkgamer6625 2 місяці тому +1

      This is no different from what the poster did. Same process of reducing powers.

  • @himanshupaliwal2026
    @himanshupaliwal2026 Рік тому +28

    a very simple solution can be to use binomial therorem (x+y)^5 and then create the expansion in terms of x+y and xy, u will directly get the quadratic equation to calculate xy.

    • @assat10
      @assat10 11 місяців тому +2

      Agreed

    • @krwada
      @krwada 2 місяці тому +1

      binomial theorem is the fastest way to solve this thing.

  • @paulortega5317
    @paulortega5317 4 місяці тому +5

    If f(n) = x^n + y^n then f(n+2) = f(1)*f(n+1) - xy*f(n) and f(0)=2
    For this problem f(1) = 4, f(5) = 464, and we first need to solve for xy
    Let xy = b then f(n+2) = 4*f(n+1) - b*f(n)
    f(0) = 2
    f(1) = 4
    f(2) = 16 - 2b
    f(3) = 64 - 12b
    f(4) = 256 - 64b + 2b^2
    f(5) = 1024 - 320b + 20b^2 = 464
    20b^2 - 320b + 560 = 0
    b^2 - 16b + 28 = 0
    (b - 2)(b - 14) = 0
    xy = 2 or xy = 14 each with 2 solutions

  • @ivansudakov6877
    @ivansudakov6877 Рік тому +51

    Как всё же хорошо знать формулы бинома Ньютона для (x + y)^3 и (x + y)^5, теорему Виета и метод подстановки! Сколько бумаги можно сэкономить!

  • @damirdukic
    @damirdukic Рік тому +26

    Another nice way to solve this equation, and I think a quicker one, is to substitute "x" with "2 + u" and "y" with "2 - u". This way, when we expand "(2 + u)^5 + (2 - u)^5 = 464" we get a biquadratic equation, which is easy to solve.

    • @IvanPetrov-rs1kq
      @IvanPetrov-rs1kq 10 місяців тому +2

      The equation is solved in 10 minutes not in 25 in the clip.

    • @stantackett107
      @stantackett107 2 місяці тому

      Yeah, I hate how these equations are made way more complicated than they need to be. Some I can solve in my head in 10 seconds. This one, needs paper​@@IvanPetrov-rs1kq

    • @jxucantab
      @jxucantab 2 місяці тому

      I did it this way, before actually watching the lengthy video. After binomial expansion and cancelling, it reduces to u^4+8u-20=0. then either u^2=2 or u^2=-10. For real solutions, t^2=2, thus t=+-sqrt(2). The real value for the (x,y) pair is (2+sqrt(2), 2-sqrt(2)). The complex pair would be (2+i*sqrt(10),2-i*sqrt(10)). Much quicker.

  • @guyhoghton399
    @guyhoghton399 Рік тому +9

    Once you have their sum and product you can write down the equation for _x_ and _y_ immediately, since
    _t² - (x + y)t + xy = 0_
    is satisfied when _t = x_ and when _t = y_
    E.g. _x + y = 4, xy = 2_
    _t² - 4t + 2 = 0_
    with roots _2+√2, 2-√2_
    which means that these are the respective values of _x_ and _y_ in either order.

  • @brianwilson2848
    @brianwilson2848 11 місяців тому +3

    I've worked in mathematics for decades, I have no idea what cancel is as an operation. Everybody that uses it seems to confuse it with dividing out, or subtracting out. However: X/X=1, X-X=0. The reason most people have trouble with algebra is they're using the same word for two completely different operations.
    There is no such operation as "cancel". Things either divide out, or they subtract out. You have to use the correct term if you're going to teach students what they're supposed to do.
    Many thanks to Mr Burt Fetters, my college algebra teacher, who drilled this into the class, and finally made algebra an understandable system.

    • @knotwilg3596
      @knotwilg3596 8 місяців тому

      I agree with you that "cancel" can be confusing to beginner mathematicians who don't really know what's going on. So, when teaching elementary algebra, it should be avoided and instead the actual operations must be made explicit. As a shorthand for an elementary operation during a more elaborate exercise for algebra literates, I think it's fine.

    • @prime423
      @prime423 7 місяців тому

      On the mark!!When in doubt, cancel out is NOT MATHEMATICS but gibberish.

  • @заряд-о3д
    @заряд-о3д Рік тому +10

    Наиболее краткое решение с верным ответом, при условии применения более простых методов - является верным!.... Здесь такого нет - решение излишне усложнено, из за этого более длинное - значит решение некорректно.... Можно было сразу использовать формулу а^n + b^n , при n = 5 .... Более того решив систему двух уравнений и в последствии квадратное уравнение получилось бы по человечески!

  • @AliBarisa
    @AliBarisa Рік тому +154

    I always feel like you complicate matters when it is actually unnecessary. Eg. X=4-Y ...(1) and XY=14...(2), just substitute (1) into (2) and solve the resultant quadratic equation. For the other case, XY=2...(3), So, substitute (1) into (3) and solve the quadratic equation. period.

  • @CecilPonsaing
    @CecilPonsaing 7 місяців тому +3

    Beautiful work.

  • @宮前達也
    @宮前達也 9 місяців тому +1

    対称式なので、xyを求めることが鍵だとは分かったが、その求め方が自分のやり方と違ってスマートなのに感心しました。あとxyを導き出した後の最後の解の求め方は2次方程式の解と係数の関係を自分は使った。

  • @user-kr1zj6lm2u
    @user-kr1zj6lm2u 9 місяців тому +5

    I have been away from math for 25 years. I was really shocked at how it came flooding back. Old brain but it is not dead yet!

    • @juliovasquezdiaz2432
      @juliovasquezdiaz2432 9 місяців тому

      Hay que practicar matemáticas todos los días. Tengo 72 añitos jaja y sigo practicando. Saludos desde Chiclayo Norte del Perú

  • @Ярослав_Вдовин
    @Ярослав_Вдовин Рік тому +4

    You could see that for x+y=4, xy=z, results will be symmetrical for each pair of rezults for both z.

  • @dinlendiricidrtv
    @dinlendiricidrtv 7 місяців тому

    Thank you very much my dear friend

  • @АлександрКомов-ъ2к
    @АлександрКомов-ъ2к 11 місяців тому +5

    Если уравнение содержит х и у в пятой степени, то это уравнение пятой степени, и тогда всех возможных корней (включая комплексные) должно быть пять. А тут четыре

  • @SH331
    @SH331 11 місяців тому +1

    Using Powers And roots to equation have some rules And leads to reducing interval of usable numbers.

  • @vasileioszounarelis5794
    @vasileioszounarelis5794 4 місяці тому +1

    Μπράβο!!!

  • @wes9627
    @wes9627 9 місяців тому +7

    Study this much simpler solution method. Substitute x=z+2 and y=-z+2 into the given equation and rearrange to (z+2)^5-(z-2)^5-464=0
    Pascal's Triangle: 1 5 10 10 5 1; 2[5*2z^4+10*2^3z^2+2^5]-464=0; 20z^4+160z^2-400=0; z^4+8z^2-20=0
    z^2=(-8±12)/2=2 or -10 and z=±√2 or ±i√10
    x=z+2=2±√2 or 2±i√10 and y=4-x=2∓√2 or 2∓i√10

  • @dogethsamurai2390
    @dogethsamurai2390 11 місяців тому +1

    Thank you
    this a long and delay process that take a lot of step, and a lot memorization require. This video show how to solve this equation with a garanteen answer.

  • @ТатьянаСтрокова-щ1р
    @ТатьянаСтрокова-щ1р 4 місяці тому +1

    Так можно решать до бесконечности, а решить можно гораздо проще.

  • @babyghost4434
    @babyghost4434 11 місяців тому +3

    nice solution i really love longer solutions it makes me feel great hahah

  • @charlesmitchell5841
    @charlesmitchell5841 Рік тому +3

    Nice problem. Nice job in solving it.

  • @MathForEverybody
    @MathForEverybody 8 місяців тому +1

    Nice!

  • @insteresting
    @insteresting Місяць тому

    x + y = 4
    x⁵ + y⁵ = 464
    Let x = 2 + n. So
    y = 4 - x
    y = 4 - (2 + n)
    y = 2 - n
    So the second equation becomes
    (2 + n)⁵ + (2 - n)⁵ = 464
    Expand and simplify the powers:
    (2 + n)⁵ = 2⁵ + 5*2⁴n + 10*2³n² + 10*2²n³ + 5*2n⁴ + n⁵
    (2 - n)⁵ = 2⁵ - 5*2⁴n + 10*2³n² - 10*2²n³ + 5*2n⁴ - n⁵
    (2 + n)⁵ + (2 - n)⁵ = 2⁵ + 2⁵ + 10*2³n² + 10*2³n² + 5*2n⁴ + 5*2n⁴
    (2 + n)⁵ + (2 - n)⁵ = 32 + 32 + 80n² + 80n² + 10n⁴ + 10n⁴
    (2 + n)⁵ + (2 - n)⁵ = 64 + 160n² + 20n⁴
    So you get to solve
    64 + 160n² + 20n⁴ = 464
    20n⁴ + 160n² + 64 - 464 = 0
    20n⁴ + 160n² + 400 = 0
    20(n⁴ + 80n² - 20) = 0
    n⁴ + 80n² - 20 = 0
    (n²)² + 80n² - 20 = 0
    s² + 80s - 20 = 0
    Solve the quadratic equation for s = n² ≥ 0:
    s = (- 8 ± √(8² - 4*1*(-20)))/(2*1)
    s = (-8 ± √(64 + 80))/2
    s = (-8 ± √144)/2
    s = (-8 ± 12/2)
    Since s = n² > 0, reject the negative value for s:
    s = (-8 + 12)/2
    s = 4/2
    s = 2
    Substitute back s = n²:
    n² = 2
    n = ±√2
    Therefore,
    x = 2 + n
    x = 2 ± √2
    y = 2 - n
    y = 2 ∓ √2
    Solution:
    (x, y) ∈ {(2 + √2, 2 - √2), (2 - √2, 2 + √2)}

  • @Miroslav_Bulgaria
    @Miroslav_Bulgaria 9 місяців тому +1

    Good job! Well done!
    Otherwise I understand that may be in different regions and countries it simply use another approach to Quadratic equations as: ax2 + bx + c = 0 to standard solution…., but was shown it is easy for simple and small numbers but otherwise it will be really difficult to determine the answers….

  • @zohrealizadeh6827
    @zohrealizadeh6827 10 місяців тому +1

    Thank you❤❤

  • @FRANKZHANG-un1ov
    @FRANKZHANG-un1ov 10 місяців тому +1

    1. \(x = 2 - \sqrt{2}, y = \sqrt{2} + 2\)
    2. \(x = 2 + \sqrt{2}, y = 2 - \sqrt{2}\)
    还有两个复数解,通常情况下我们只考虑实数解。

  • @medbou3136
    @medbou3136 Рік тому +2

    You must use relation betwen th summ and product of the roots for equation of 2nd degrees.

  • @jyotishah9140
    @jyotishah9140 7 місяців тому +1

    It’s so long I think how to do in exam short period
    Thanks

  • @sasisugu
    @sasisugu 5 місяців тому +1

    Explained well sir
    I have studied maths only upto 10th std. In +2 I've studied pure science
    This solution which taught by you is very difficult to me. So, so hard sir.
    How can I pick up it.🙄

  • @assat10
    @assat10 11 місяців тому +1

    Good job mate!

  • @сергейрождественский-ь9х

    ❤❤❤❤

  • @kuuso1675
    @kuuso1675 Рік тому +2

    When we meet x+y=a and xy=b, we better say x,y are the solutions of t^2-at-b=0. Though in the video (x-y)^2=8 is changed into x-y=±2√2, it should be |x-y|=2√2 and will need case treatment. We may omit them with proposed explanation.

    • @kuuso1675
      @kuuso1675 Рік тому

      t^2-at+b

    • @ft7339
      @ft7339 Рік тому +1

      Should be:
      t^2 - at + b = 0

  • @АндрейКожевников-о8й

    Гораздо проще решать методом итераций: подставляем 2, первое выражение попадаем в точку а во втором при прямой подстановке получаем значение равное 64. Артнллеристы скажут, что до цели большой недолет. Подставляем в оба выражения Х=3, в обоих выражениях получаем большой перелет. Во втором выражении Х=648, поэтому взяв эти выражения в вилку(как говорят артеллериств) будем подбирать промедуточное число на отрезке 2 и 3.

    • @ft7339
      @ft7339 Рік тому

      So you will get only the real answers!

  • @pengliang151
    @pengliang151 11 місяців тому +6

    Why a degree 5 equation only have 4 sets of roots ? Is something missing ?

    • @Dante-420
      @Dante-420 10 місяців тому +4

      If you solve x^5+y^5 = 464 for one variable, you get five solutions because it's a fifth degree polynomial equation.
      But this isn't a polynomial equation - it's a *system* of polynomial *equations*. Finding the number of solutions to a system of polynomial equations is much more difficult, because it's complicated by factors like the independence of equations and the possibility of infinitely many solutions (check out the wikipedia article for "system of polynomial equations").
      In this particular case, we're lucky because the fifth degree polynomial x^5+y^5 is divisible by x+y so we just need to solve the fourth degree polynomial that results from the quotient, hence four solutions. (Also, normally we would need to prove the demoninator of our polynomial division is not zero, but here we are given x+y=4)

  • @phoebe543
    @phoebe543 6 місяців тому +1

    I think you'd get more positive feedback if you offered this as an alternative solution and do quadratic in method 1.

  • @ThuNguyen---
    @ThuNguyen--- 10 місяців тому +2

    Bài toán khá phức tạp phải áp dụng nhiều kiến thức toán học, cùng vài trang giấy mời giải được !

  • @sinisakarabatkovic-fq8qg
    @sinisakarabatkovic-fq8qg 7 місяців тому +1

    While it is good for brain 🧠 maintenance to think or practice logic, it is crucial to learn how to put problems in mathematical form. If your problem is not correctly described by a mathematical equation then result is wrong. Garbage in garage out is what they teach you in computer classes.

  • @IEPYandPUYO
    @IEPYandPUYO Рік тому +1

    Nice video! 👍 You should've written x1y1 and x2y2 at 11:51, because the way you wrote xy=14 and xy=2, it looks like you're saying that 14=2. 😁 Same thing for u. Should've been u1 and u2.

  • @UshanaMakeba
    @UshanaMakeba 9 місяців тому +1

    Can someone explain to me at 13:00 when he just puts in (x+y)^2 + (x-y)^2= 4xy, where do the (x-y)^2 and 4xy come from? It feels like he just adds them in out of nowhere, though he says it’s an algebraic rule.

    • @catherine7304
      @catherine7304 8 місяців тому

      it is (x+y)^2 - (x-y)^2=4xy

  • @echodupeterwilliamgriefiel3832
    @echodupeterwilliamgriefiel3832 6 місяців тому +1

    like your pen, whts the type name?

  • @olayinkaadeleye3134
    @olayinkaadeleye3134 Рік тому +1

    Nice

  • @MrUtubePete
    @MrUtubePete 9 місяців тому +1

    Nice pen

  • @user-Aliceten
    @user-Aliceten 11 місяців тому +2

    x^5+y^5=464なので
    5乗の場合 解が5個存在しないとおかしいので
    解が4個は不正解です
    ヒントだけ書いときますね
    もう一個の解は2を使いません xかyにマイナスがあるため 結構大きな数字が入ります

    • @Dante-420
      @Dante-420 10 місяців тому

      I wrote this in another comment, but the reason we have 4 solutions is because this is a "system of polynomial equations" instead of a polynomial equation. In this particular system, we can divide x^5+y^5 by x+y to obtain a 4th degree equation, which is what is being solved. This division is valid because x+y=4≠0

  • @mohamedyassine6250
    @mohamedyassine6250 Рік тому +6

    Hello . Please I need the solution to this equation. x,y are reals such that: x²-xy+y²=76 What is the value of x+y=?

    • @Caturiya
      @Caturiya 11 місяців тому

      I solved it I hoped nicely Allah Akbar 4 you ua-cam.com/video/gQBFudhLdEs/v-deo.html

  • @Ta-tamaan
    @Ta-tamaan Рік тому +3

    I like how you always say "bracket" but always put a "parenthesis"❤

  • @Darisiabgal7573
    @Darisiabgal7573 10 місяців тому +1

    Of the solutions two were imaginary and two were trivial, but since one of the imaginary solutions was also trivial the is in only one non-imaginary non-trivial solution.

  • @thomasmunch2190
    @thomasmunch2190 Рік тому +1

    Can you help me compute the flux integral of the surface S using the divergence theorem if the vector field F = yj and S is a closed vertical cylinder of height 2, with its base a circle of radius 1, on the xy-plane, centered at the origin ?

  • @WildRhinocerosDriver
    @WildRhinocerosDriver 10 місяців тому +1

    А зачем так сложно то? ))) Пришла пора попробовать себя в физике или химии

  • @ЭдуардПлоткин-р3л

    Зачем же так сложно решать? Этот же ответ я получил через 5 минут.

  • @HiepThach-uw1ix
    @HiepThach-uw1ix 8 місяців тому +1

    Quá phức tạp

  • @adefumiemax-macarthy950
    @adefumiemax-macarthy950 7 місяців тому

    😊😊

  • @fei7954
    @fei7954 11 місяців тому +1

    How many pages you used 😊eventually

  • @estevan2065
    @estevan2065 Місяць тому

    4 da matina, parei de assistir na hora que ela mudou de folha, poucas ideia pra Y menos ainda pra X

  • @fei7954
    @fei7954 11 місяців тому +2

    I more interested how many pages you used eventually

  • @charliekollarovics5084
    @charliekollarovics5084 11 місяців тому +1

    Miért nem használod a másodfokú egyenlet képletét?

  • @zainquadri1206
    @zainquadri1206 2 місяці тому +2

    I am as dumb as I started... If anything I am dumber...

  • @waimanchin495
    @waimanchin495 Рік тому +2

    坐標內有i,是什麼意思?

  • @flyingfish2011
    @flyingfish2011 10 місяців тому +1

    完全看蒙了,如果是考试,估计半个小时做不完一道题呀😂

  • @reinymichel
    @reinymichel 8 місяців тому +1

    What a long ending !!!
    At the end, once you have xy=14 and x+4 = 4
    x(4-x) = 14
    x^2 - 4x + 14 = 0
    x = (4 ± √-40)/2 , or x = 2 ± √10 i , same thing for the other case , so you your 2 x's , easy to get the y

  • @ajeethpandey
    @ajeethpandey 8 місяців тому +1

    A symple problem made complicated and much more the time 25 mins !

  • @waimanchin495
    @waimanchin495 Рік тому +1

    一般聯立方程要的是實數解!

  • @ControlledDemolition
    @ControlledDemolition 8 місяців тому +1

    x = ~.58
    y = ~3.42

  • @HoangVu-nt2uo
    @HoangVu-nt2uo 11 місяців тому +1

    Trực tiếp mũ 5 phương trình x+y=4 cho ra cái x^5 và y^5 luôn

  • @xopenmind
    @xopenmind 5 місяців тому +2

    too complicated .. xy=P and x+y=S you can solve by x^2 -Sx +P = 0 ...

  • @AlexMarkin-w6c
    @AlexMarkin-w6c 11 місяців тому +1

    The solution is straight forward for school students: y=4-x => x^5+(4-x)^5=464 (x^2-4x+2)(x^2-4x+14)=0. For real solutions , (x^2-4x+2)=0 (x-2)^2-2=0,. Alternatively, Vieta's formula and symmetry.

  • @ВалентинГорелов-ф2э

    Учителю надо бы поучиться умножать целые числа

  • @alexandredutremblay7050
    @alexandredutremblay7050 11 місяців тому +1

    Something bothers me. Intuitively, I would have thought that a 5 degrees équation should have 5 couples of solutions in C, no? Just like a 5 degrees equation of x has 5 solutions in C. I would guess that I'm wrong somewhere, but i dont know where, and if i'm not where ois the fifth solution ?

    • @knotwilg3596
      @knotwilg3596 8 місяців тому

      There's an extra constraint x+y=4. This reduces the solution space with (at least) one degree.

  • @KingAntDaProphet
    @KingAntDaProphet Рік тому +1

    Just divide by five and split it in half

  • @edwardtaschtschyan2707
    @edwardtaschtschyan2707 10 місяців тому +1

    Х=1, у=3(х=3 у=1)

  • @rogelioroldan9527
    @rogelioroldan9527 8 місяців тому +1

    Siempre te complicás Ecotú querido. Sustitución x=4-y, lo sustituyes en la 2a ecuación. Mirá que fácil. No te compliques tanto Ecotú.

  • @anakham79
    @anakham79 11 місяців тому +1

    Despite this solution is very detailed, I think it is not entirely correct. Exponentiation of left and right equation parts, as well as multiplication of equation parts, is not equivalent transformation. x=-1 is not equivalent to x^2=(-1)^1, and even x=1 is not equivalent to x^3=1 in the field of complex numbers. If you added equations (3) and (4) to the initial system, it would be equivalent transformation of system as a whole. But in this case you should check every solution of your intermediate equation, whether it feats to both initial equations (1) and (2). And we all will see the practise of exponentiation to the power of 5 complex numbers and numbers with radicals. Or you should use fundamental theorem of algebra about polynomial complex root number, using transition to biquadratic equation, already mentioned in comments. But in this case may be it's worth just to use formula for biquadratic equation?

  • @DonaldKim33
    @DonaldKim33 10 місяців тому +1

    When I asked Chatgpt
    It is said that the x ≈ is 2.532 and the y ≈ is about 1.468.

  • @PentaNamemitsu
    @PentaNamemitsu 28 днів тому

    Why only 4 solutions for quintic equation?

  • @louismendoza9795
    @louismendoza9795 Рік тому +1

    A good mathematician does not make a good teacher. I suggest using a logic line on the right of your equations so that you can explain their thought processes.

  • @haothe1099
    @haothe1099 11 місяців тому +1

    X^5 + Y^5 = 464

  • @IvanPetrov-rs1kq
    @IvanPetrov-rs1kq 10 місяців тому +1

    Haven't you studied about a discriminant of a quadratic equation? 8th or 9th grade in the school. The problem is much easier to solve, not in 25 minutes.

  • @BrandonCBlack-zn6qt
    @BrandonCBlack-zn6qt 10 місяців тому +1

    why not try brute force method : X = 3.4142, : y = 0.585799. Thanks

  • @cachotrelles4715
    @cachotrelles4715 Рік тому +1

    Buenas tardes, hermosa explicación. Y, como sostengo, las matemáticas, sus reglas y sus números SON EL IDIOMA...no importa la lengua en que se explique. Gracias

  • @maxlion3213
    @maxlion3213 11 місяців тому +1

    ...io vado al cinema..😢

  • @AlbaRosa-ui3xs
    @AlbaRosa-ui3xs 2 місяці тому +1

    Forse questi video sono rlivolti a chi non ha dimestichezza con la matematica e si sceglie un metodo più lungo,ma più semplice da comprendere...

  • @NonyaBusiness-q6r
    @NonyaBusiness-q6r 9 місяців тому +1

    It's 46÷23 =2 then 4 divided by 2 thats 2 that's 2, 2s so it's 2to the power or 2 2square idk how to articulate how you say it properly in mathematics

  • @carlosdavila382
    @carlosdavila382 Рік тому +1

    12:45 es obvio pero como se te ocurrió

  • @user-we5kx2tn6o
    @user-we5kx2tn6o Рік тому +3

    Это всё равно что лететь из Берлина в Париже через Пекин.

  • @gLg359
    @gLg359 11 місяців тому +2

    x5,y5=?

  • @ivantdibere8020
    @ivantdibere8020 Рік тому +1

    Подставлял кто-то эти решения в уравнение?У меня не выходит(выходит на первое).

    • @ЮрийКочетов-р5п
      @ЮрийКочетов-р5п 11 місяців тому

      Да, подставлял.
      Обращаются в верные равенства.
      Все четыре пары являются корнями системы

    • @ЮрийКочетов-р5п
      @ЮрийКочетов-р5п 11 місяців тому

      Кстати, у Вас ценное замечание на счёт проверки корней уравнений. 👍
      При возведении частей уравнения в степень, при замене переменной (что в данном решении встречалось) могут появиться "посторонние корни", которые не являются корнями исходного уравнения.
      Так что проверка обязательна и без неё решение не является полным:-)

  • @markterribile6948
    @markterribile6948 11 місяців тому +1

    Interesting problem, interesting solution technique. BUT you belabor and agonize over basic arithmetic, but leap over the error-prone operations such as collection of terms. Your presentation could be so much more helpful if you show the error-prone steps, but move quickly through the truly elementary stuff.

    • @markterribile6948
      @markterribile6948 11 місяців тому

      Followup: Each step you show should be as much as can be verified by quick inspection, neither more nor less. Anyone taking this problem on already has elementary algebra. The magic of this solution lies in generating formulas that allow the repeated substitution of known values. That's the magic, and the structure of that magic should be foremost in the presentation.

  • @rameshkmishra2517
    @rameshkmishra2517 9 місяців тому +4

    Why you are making it that much complicated

  • @bathaoang5061
    @bathaoang5061 6 місяців тому +1

    X .y tinh bình phương lập phương trình vv. Quy đồng mẫu số và rút gọn phân số vv. OK bạn vvv.

  • @lucksys
    @lucksys 11 місяців тому +1

    IS a big fail cancel (x+y)² with the squere root , because this is the a absolute value definition. So is wrong !!!

  • @SH331
    @SH331 11 місяців тому +1

    Ať time 8.36 u²-6u²!=5u² you
    forget minus

    • @davereynolds739
      @davereynolds739 7 місяців тому

      He's moving everything to the right side of the equation, so 5u^2 is correct.

  • @Nepomenik
    @Nepomenik 11 місяців тому +1

    :)

  • @thekennethofoz3594
    @thekennethofoz3594 11 місяців тому +2

    I find it really poor practice to use "x" for both a variable and a multiplication symbol in the same equations. So much opportunity for confusion, and it really slows down the scanning of a line.

  • @DuyGiap-z5k
    @DuyGiap-z5k 11 місяців тому +1

    Những phép phân tích quá đơn giản mà diễn giải quá chi tiết làm mất thời gian và gây khó chịu quá

  • @pi4yga
    @pi4yga 11 місяців тому

    Я тебя 20минут смотрела, чтоб узнать. Ты конкретно определишь чему равны x и y? Просто там а первом уравнении видно, что один равен 1, а второй 3. Просто можно числа поменять. От этого не изменится решение ни одного ни второго уравнения

    • @annaanutka
      @annaanutka 11 місяців тому

      Но только 1^5 + 3^5 не равно 464

  • @vasileioszounarelis5794
    @vasileioszounarelis5794 4 місяці тому

    Use vietta types

  • @秦劍鋒
    @秦劍鋒 Рік тому

    算完天都亮了,下一位

  • @sgenov
    @sgenov 11 місяців тому +1

    If I was reviewing your work, I would give you a low grade for not using a simpler solution.

  • @afinstal
    @afinstal Місяць тому +1

    Congratulations. You found the way to hate maths.

  • @arupsaha5967
    @arupsaha5967 2 місяці тому +1

    Fo u know math or u are writing mohabharat