Poland Math Olympiad | A Very Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 1 січ 2025

КОМЕНТАРІ • 49

  • @MarieAnne.
    @MarieAnne. Місяць тому +4

    Let O = center of circle. OA = OP = OQ = OB = radius = x/2
    Let ∠AOP = ∠POQ = θ → ∠BOQ = 180 − 2θ
    Using law of cosines in △AOP we get:
    cos θ = [(x/2)²+(x/2)²−3²]/[2(x/2)(x/2)] = (x²−18)/x²
    Using law of cosines in △BOQ we get:
    cos(180−2θ) = [(x/2)²+(x/2)²−7²]/[2(x/2)(x/2)] = (x²−98)/x²
    Now we setup relationship between these angles to get equation in x only
    cos 2θ = −cos(180−2θ)
    2 cos²θ − 1 = −(x²−98)/x²
    2 (x²−18)²/x^4 − 1 = (98−x²)/x²
    2 (x²−18)² − x^4 = x² (98−x²)
    2 (x²−18)² − x^4 = 98x² − x^4
    2 (x²−18)² = 98x²
    (x²−18)² = 49x²
    (x²−18)² − 49x² = 0
    (x²−7x−18) (x²+7x−18) = 0
    (x+2) (x−9) (x−2) (x+9) = 0
    x = ±2, x = ±9
    Since x is diameter of circle, it must be longer than chords → x > 7
    *x = 9*

  • @ludmilaivanova1603
    @ludmilaivanova1603 Місяць тому

    @ 6:53 connect A and Q and get a right triangle AQM (angle ACB=90 degrees) which is similar to BPM. from that, 6/a= 7+a/3. 18=7a+a^2. a=2. sinse triangle ABC is isosceles D= BM = 9.

  • @michaeldoerr5810
    @michaeldoerr5810 Місяць тому +3

    The answer is 9 units. And it looks like this a good example of knowing what would be the right circle theorem to make use of in order to justify auxiliary lines. I am kind of wondering, how many circle theorems justify auxiliary lines???

  • @soli9mana-soli4953
    @soli9mana-soli4953 Місяць тому +2

    A fast solution can be drawing segment PQ on the right side simmetrically to AP and BQ in the middle getting an isosceles trapezoid with minor base 7 and lateral sides 3, major base x. We can find x with Euclid’s theorem on APB right triangle:
    3^2=x*(x-7)/2
    x^2-7x-18=0
    X=9
    Very nice problem, very nice the solution by Mathboost❤

    • @timeonly1401
      @timeonly1401 Місяць тому

      soli9mana, would you describe in greater (clearer) detail your construction? I dont' understand the "drawing segment PQ on the right side simmetrically to AP and BQ in the middle getting an isosceles trapezoid with minor base 7 and lateral sides 3, major base x"
      (1) I know what an 'isoscele trapezoid' is; I don't understand HOW you got it.
      (2) I tried to look up "Euclid's theorem", but can only find a theorem from number theory, not one that would apply to right triangles...
      HELP!! Thx. 😊

    • @soli9mana-soli4953
      @soli9mana-soli4953 Місяць тому

      @ Sure. You only have to draw a little different figure in which the segments whose length is 3 are one from A and the other from B, at the opposite sides of the diameter, simmetrically. Then the segment of 7 on the top, in the middle, parallel to the diameter, being lateral sides at the same height. In this way you see an isosceles trapezoid , with the diameter, and your goal is to find its major base. I hope it’s clearer, can’t say better

    • @soli9mana-soli4953
      @soli9mana-soli4953 Місяць тому

      @@timeonly1401 1) I simply built the isosceles trapezoid with the recombined segments (chords if you prefer) of the original figure: instead of having the sequence 3-3-7, replace with 3-7-3. Or try to draw an isosceles trapezoid inscribed in the semicircle with the major base x, minor base 7 and the two sides 3, in this way you will have your modified figure.
      2) If you are a fan of geometry problems, you should know the two beautiful theorems of Euclid, the man who wrote the most beautiful mathematics book in the world! Know that there are a couple that concern right triangles, the one I used in the problem exposed says that:
      In any right triangle, the area of ​​the square on a side adjacent to the right angle is equal to the area of ​​the rectangle whose dimensions are the length of the projection of this side on the hypotenuse and the length of the hypotenuse. I Hope this help

  • @oscarcastaneda5310
    @oscarcastaneda5310 Місяць тому

    Knowing cos(theta) = 7/(2r) and then using the Law of Cosines with one of the triangles with two sides "r" and third side "3" one can determine that 2r is 9.
    Theta is the angle subtended by the "3" side and the center of the semicircle.

  • @kateknowles8055
    @kateknowles8055 Місяць тому

    Adding -{lines AQ and}- BP to the diagram and labelling O the centre of AB ( X is the diameter of the semicircle and O is the centre.) ,
    -{ then APB and AQB are two rightangled triangles with 90º angles at P and at Q respectively. AQ^2= X^2 - 7^2 and BP^2 = X^2 - 3^2 by Pythagoras' theorem.
    AC.CQ is equal to BC.CP if we label the point of intersection of AQ and BP as C. A, P, Q and B are given points on a (semi-)circle.
    (AC+CQ)^2 = AQ^2 = AC^2 +CQ^2 +2AC.CQ
    (BC+CP)^2 = BP^2 = BC^2 + PC^2 + 2BC.CP Now BP^2 - AQ^2 is equal to BC^2 +PC^2 - AC^2 - CQ^2 +(2BC.CP- 2AC.CQ , this term in the bracket equals zero)}-
    but I think there should be a solution that does not use AQ and does not use C
    Let ½X = r the radius, which equals OA, OP, OQ and OB Now angles AOP and POQ are equal and naming them each tº then the value of angle QOB is 180º- 2tº
    and 7x7 = 49 = r^2 +r^2 - 2.r.r cos(180-2t) and 3x3 =9 = r^2 +r^2 - 2.r.r cos (t)
    49-9 = 2.r.r ( cos (t) - cos (180 -2t) r.r = r^2= (40/2) / ( cos(t) + cos (2t)) cos (2t) = cos^2(t)-sin^2(t) = 2cos^2(t ) -1
    r^2 = 20 / (2cos^2(t) +cos(t) -1) the denominator factorises as ( 2c+1)(c-1) where c= cos(t)
    So a couple of paths i have shown here which are to be abandonned and the solution to be sought in the video provided here.
    Peeping at it now I perceive that I forgot that construction can be extended beyond the given shape, and this can simplify the solution.
    Thank you again, Math Booster , well done to students who " got it" on their own efforts, and encouragement and better "luck" next time to others!

  • @timeonly1401
    @timeonly1401 Місяць тому

    Draw segments AQ & PB, and call their lengths c & d, respectively. ∠APB & ∠AQB are right angles (By Thales Thm).
    So, applying Pythagorean Thm to ∆AQB & ∆APB: c² + 49 = x² and 9 + d² = x², so that c=√(x²-49) and d=√(x²-9).
    All the vertices of quadrilateral APQB are on the semicircle (&, hence, the circle), so APQB is a CYCLIC quadrilateral.
    So, the product of the diagonals is equal to the sum of the products of opposite sides (Ptolemy's Thm). Applying, we get:
    (AQ)(PB) = (AP)(QB) + (PQ)(AB)
    c d = (3)(7) + (3)x = 3(x+7)
    Subbing in c and d from earlier:
    √(x²-49) √(x²-9) = 3(x+7)
    Squaring both sides and solving for x:
    (x²-49)(x²-9) = 9(x+7)²
    (x-7)(x+7)(x²-9) = 9(x+7)²
    [x is a diameter which is the longest chord in the circle, so x > 7. Hence x-7 > 0. And because x-7 is not zero, we can divide both sides by it.]
    (x-7)(x²-9) = 9(x+7)
    x³ - 7x² - 9x + 63 = 9x + 63
    x³ - 7x² - 18x = 0
    x(x² - 7x -18) = 0
    [x > 7 ⇒ x ≠ 0]
    x² - 7x -18 = 0
    (x-9)(x+2) = 0
    x = 9 or x = -2 (elim., since x>7)
    so x=9.
    Done!!

  • @imetroangola17
    @imetroangola17 Місяць тому +1

    *_Solução:_*
    No triângulo retângulo ∆APB:
    *sen θ = 3/x*
    No triângulo retângulo AQB:
    *cos 2θ = 7/x*
    Como cos 2θ = 1 - 2sen² θ, então:
    7/x = 1 - 2 × (3/x)²
    Seja 1/x = y > 0. Daí,
    7y = 1 - 18y² → 18y² + 7y - 1 = 0.
    ∆ = (-7)² - 4× (18)×(-1) = 121
    y = (-7 + 11)/36 = 4/36 = 1/9
    x = 1/y → *x = 9 unidades*

  • @bpark10001
    @bpark10001 Місяць тому +3

    You can simplify this problem by rearranging the line segments with the 7 long one at the center. Then symmetry gives 2 triangles: one hypotenuse 3, one leg r-3.5, & the other hypotenuse r, one leg 3.5. Equating Pythagoras for the 2 other legs gives equation
    3² - (r - 3.5)² = r² - (3.5)². 2r² - 7r - 9 = 0. r = 4.5. X = 2r = 9.

    • @kateknowles8055
      @kateknowles8055 Місяць тому +1

      That is a new and useful approach . Well done.

    • @imetroangola17
      @imetroangola17 Місяць тому

      *_Solução:_*
      No triângulo retângulo ∆APQ:
      *sen θ = 3/x*
      No triângulo retângulo ∆AQB:
      *cos 2θ = 7/x*
      Como cos 2θ = 1 - 2sen² θ, então
      7/x = 1 - 2 × (3/x)²
      Seja 1/x = y > 0. Daí,
      7y = 1 - 2 × 9y² → 18y² + 7y - 1 = 0.
      ∆ = (-7)² - 4×(-1)×18 = 121
      y = (-7 + √121)/36 = (-7 + 11)/36
      y = 4/36 = 1/9. Portanto,
      1/x = y → x = 1/y = 1/(1/9)
      *x = 9 unidades*

    • @kateknowles8055
      @kateknowles8055 Місяць тому +2

      @@imetroangola17 Bueno.

    • @marcusdecarvalho1354
      @marcusdecarvalho1354 Місяць тому

      I don't understand how I can simplify that problem.

    • @bpark10001
      @bpark10001 Місяць тому

      @@marcusdecarvalho1354 Re-arranging the order of the line segments does not affect the radius, so they can be re-arranged to exploit symmetry to simplify the problem.

  • @tezchan_p6mk2sr
    @tezchan_p6mk2sr Місяць тому

    円の中心(ABの中点)を点Oとすると
    △OBP∽△PQA(∵△OBP、△PQAは共に二等辺三角形、∠PQA=∠PBA(弧PAに対する円周角))
    よってPA:AQ=OB:BP →PA×BP=AQ×OB
    PA=3、AQ=√(x²-7²)、OB=x/2、BP=√(x²-3²)
    3×√(x²-3²)=√(x²-7²)× x/2
    9x²-81=(x⁴-49x²)/4
    x⁴-85x²+324=0 →x²=4、81 →x=2、9
    x>7より、x=9

  • @pwmiles56
    @pwmiles56 Місяць тому

    Taking perpendiculars from the centres of the chords and forming right triangles
    2 arcsin(3/x) + arcsin(7/x) = pi/2
    2 arcsin(3/x) = pi/2 - arcsin(7/x)
    Take sine of both sides
    2 (3/x) sqrt(1-9/x^2) = sqrt(1 - 49/x^2)
    36/x^2 (1-9/x^2) = 1 - 49/x^2
    Multiply by x^4, rearrange and simplify
    x^4 - 85x^2 + 36.9 = 0
    x^2 = (85 +/- sqrt(85^2 - 36^2)) / 2
    x^2 = (85 +/- 77) / 2
    x^2 = 81 or 4
    x>=7 so
    x=9

    • @kateknowles8055
      @kateknowles8055 Місяць тому

      This looks good , efficient and neat . ( I lose the plot somewhere in line four or five. )

    • @pwmiles56
      @pwmiles56 Місяць тому

      @@kateknowles8055 For example, in the third line of working, by the double angle formula for sine
      sin(2 arcsin(3/x)) = 2 sin(arcsin(3/x)) cos(arcsin(3/x))
      The sin and arcsin cancel out so the first term on the right is just 3/x. The second term is cos of something that 3/x is the sin of, so using cos^2 = 1 - sin^2 you get
      sqrt(1 - 9/x^2).
      With sin(pi/2 - arcsin(7/x)), you have the complementary angle so it is
      cos(arcsin(7/x)) and proceed similarly.

  • @marcgriselhubert3915
    @marcgriselhubert3915 Місяць тому

    We use an orthonormal center O, the center of the circle, and first axis (OA).
    We have A(R; 0) B(-R; 0) P(R.cos(t); R.sin(t)) Q(R.cos(2.t); R.sin(2.t)) with R the radius of the circle and t = angleOAP, 0°

  • @marioalb9726
    @marioalb9726 Місяць тому +2

    My solution, same as video.
    Excellent !!!

  • @skwest
    @skwest Місяць тому

    Or, instead......
    1) Connect AQ.
    2) Drop perpendicular from P to AQ, intersecting AQ at R.
    3) Extend PR through O to intersect circle at S, making PS a diameter (length X), with PR = a, and RS = X - a.
    4) For Right△APR, calculate (by Pythagoras) the length of AR as √(3² - a²) = √(9 - a²).
    5) Use Intersecting Chords (AQ and PS) to figure 'a' in terms of X... i.e. AR * RQ = PR * RS:
    √(9 - a²) * √(9 - a²) = a * (X - a), or
    9 - a² = aX - a², so that
    9/X = a
    6) Next, use Right △AQB and Pythagoras to establish that:
    7² + [2 * √(9 - a²)]² = X², which is,
    49 + 36 - 4a² = X²; simplified to 'a' in terms of X becomes:
    √[(85 - X²)/4] = a
    7) Substituting for 'a' from #5, we get:
    √[(85 - X²)/4] = (9/X), square both sides to get
    (85 - X²)/4 = 81/X², or
    85X² - X⁴ = 324, or
    X⁴ - 85X² + 324 = 0
    8) Substituting Z = X² we have:
    Z² - 85Z + 324.
    9) Use the quadratic equation to solve for Z:
    Z = [85 ± √(85² - 4 * 1 * 324)]/2, or
    Z = [85 ± √(7225 - 1296)]/2
    Z = [85 ± √(5929)]/2 = [85 ± 77]/2, or
    Z = 81 or 4
    10) Reverting with Z = X² we get:
    X = √81 = 9, or X = √4 = 2
    Obviously, X cannot be equal to 2, as the resulting △AQB would be degenerate.
    Therefore, X = 9. Q.E.D.

  • @ekoi1995
    @ekoi1995 20 днів тому

    similar triangles: (a+7)/(6) = (3)/(a)
    a=2
    x=a+7 = 2+7=9

  • @shaozheang5528
    @shaozheang5528 Місяць тому

    The answer is 14. Use the properties of cyclic quadrilaterals and the thales theorem to find out by connecting A to Q.

  • @alipourzand6499
    @alipourzand6499 Місяць тому

    Nice solution! I was stucked ☺

  • @raghvendrasingh1289
    @raghvendrasingh1289 Місяць тому +1


    By Ptolemy's theorem
    3x+21 = sqrt {(x^2 - 49)(x^2 - 9) }
    x^3 - 67x - 126 = 0
    X= 9 by RRT

    • @sarantis40kalaitzis48
      @sarantis40kalaitzis48 Місяць тому +1

      x^3 -7•x^2 -18x=0, x>0 so x^2-7•x-18=0 so (x+2)•(x-9)=0 so x=-20 Accepted.

  • @gzimatipi3964
    @gzimatipi3964 29 днів тому

    AQ= √3²+3²=√18=3√2
    X=√ (3√2)²+7²
    X=√9x2+49
    X=√67
    X=√9*7
    X=3√7

  • @tocamelosuevos
    @tocamelosuevos Місяць тому

    Hay algo que no me cuadra. El problema planteado tiene infinitas soluciones si se resuelve con un compás y una regla, dependiendo del ángulo que arbitrariamente formemos entre los segmentos PA y PQ y, por ende, de la longitud del segmento AQ. Cuando un problema geométrico tiene una 'única' solución trigonométrica, tiene tambíen una 'única' solución gráfica. Y no es el caso.

  • @AmirgabYT2185
    @AmirgabYT2185 Місяць тому +1

    x=9

  • @SGuerra
    @SGuerra Місяць тому +1

    🎉🎉🎉 A questão é muito boa. Eu resolvi aplicando o Teorema dos Cossenos e a minha solução não exige uma construção auxiliar. Parabéns pela escolha 🎉🎉🎉 BRASIL Novembro de 2024.

  • @nexen1041
    @nexen1041 Місяць тому

    That was a really good question

  • @giuseppemalaguti435
    @giuseppemalaguti435 Місяць тому

    APQ=α...teorema del coseno 18-18cosα=x^2+49+14xcosα..x^2+31+(14x+18)cosα=0...poi,teorema del seno √(x^2-49)/sinα=3/sin(90-α/2)=3/cosα/2..(x^2-49)/(1-(cosα)^2)=9/(1+cosα)/2….semplifico risulta cosα=(67-x^2)/18..sostituisco mi risulta una cubica 7x^3-469x-882=0,con soluzione x=9

  • @Arroz_040
    @Arroz_040 Місяць тому +1

    Que pedo pq no hay nadie que hable español xd

  • @sarantis40kalaitzis48
    @sarantis40kalaitzis48 Місяць тому +1

    Applying Ptolemys Theorem we have 3•x+3•7=√(x^2-7^2)•√(x^2-3^2) so [3•(x+7)]^2=(x+7)•(x-7)•(x^2-9) , divide Both Sides by x+7>0, hence 9•(x+7)=(x-7)(x^-9) so 9x+63= x^3-9x-7x^2+63 so x^3-7x^2-18x=0,x>0 so x^2-7x-18=0 so (x+2)•(x-9)=0 so x=-2,x>0 Rejected ,or x=9 Accepted.

  • @murdock5537
    @murdock5537 Місяць тому

    Nice! φ = 30°; AO = BO = PO = QO = r → 2r = AB = x = ?
    AP = PQ = 3; BQ = 7; QA = k; sin⁡(BQA) = 1 = sin⁡(BPA)
    BQO = OBQ = AOP = POQ = δ → AOQ = 2δ; ∆ ABQ → k^2 = 4r^2 - 49; cos⁡(δ) = 7/2r
    ∆ AOP → 9 = 2r^2(1 - cos⁡(δ)) = 2r^2(1 - 7/2r) → (r - 7/4)^2 = (11/4)^2 → r > 0 → r = 9/2 → x = 9 →
    cos⁡(δ) = 7/9; k = QA = 4√2; QPA = γ → cos⁡(γ) = -7/9 → γ = 6φ - δ; AOQ = 2δ → cos⁡(2δ) = 17/81

  • @prossvay8744
    @prossvay8744 Місяць тому

    X=2(9/2)=9

  • @nenetstree914
    @nenetstree914 11 днів тому

    9

  • @와우-m1y
    @와우-m1y Місяць тому +1

    asnwer=11cm isit

  • @marsel4111
    @marsel4111 29 днів тому

    Индийский английский противно Слушать, дизлайк за это!!

  • @adamhanna9940
    @adamhanna9940 Місяць тому

    Answer is 11.27 took 1.5 minutes