How to show the limit of a multi-variable function doesn't exist

Поділитися
Вставка
  • Опубліковано 14 лис 2024

КОМЕНТАРІ • 33

  • @bprpcalculusbasics
    @bprpcalculusbasics  3 місяці тому +5

    6 ways of evaluating the limit of a multi-variable function: ua-cam.com/video/FJ-ofPVY5P8/v-deo.html

  • @manasirpathshala
    @manasirpathshala 3 місяці тому +26

    Timestamps
    Q1:- 0:00 - 4:03
    Q2:- 4:04 - 7:31
    Q3:- 7:32 - 12:09
    Q4:- 12:10 - 18:22
    Q5:- 18:23 - 23:49
    Q6:- 23:50 - 31:11
    Q7:- 31:12 - 34:49
    Q8:- 34:50 - 40:19

    • @pedropiata648
      @pedropiata648 3 місяці тому

      Up

    • @manasirpathshala
      @manasirpathshala 3 місяці тому +1

      ​@@aaryavbhardwaj6967that isn't copying I guess? There are differences. Moreover I was eating so I had to do it with left hand which took me some time. Sorry if that causes any confusion. Have a great day!

    • @aaryavbhardwaj6967
      @aaryavbhardwaj6967 3 місяці тому

      Sorry for being a bit rude

  • @aaryavbhardwaj6967
    @aaryavbhardwaj6967 3 місяці тому +15

    00:00 Intro
    00:36 (x^2+y) /(x-2y)
    04:05 |x|^|y|
    07:33 (e^x - cosy)/(x-y)
    12:10 (x^2 y)/(x^4+y^2)
    18:24 xy/(x+y)
    23:51 (√x+√y-2)/(x+y-2)
    31:12 (xsinx)/siny
    34:49 (x y^2 z^2)/(x^3+y^6+z^6)
    40:07 Outro

  • @bprpcalculusbasics
    @bprpcalculusbasics  3 місяці тому +10

    Could anyone make the timestamp for this video? Thank you!

  • @erroraftererror8329
    @erroraftererror8329 3 місяці тому

    My Calculus 3 class never had such interesting (and challenging) multivariable limits. I had never even seen a multivariable limit question that didn't approach the origin until I saw your videos. I had also never seen a multivariable limit question where the answer required the sin(x)/x limit or a parametric curve until this video. Awesome stuff!

  • @unusuallyy
    @unusuallyy 23 дні тому +1

    Like i saying always what a teacher wonderful

  • @fireballman31
    @fireballman31 2 місяці тому

    Number 7 is just amazing

  • @maaikevreugdemaker9210
    @maaikevreugdemaker9210 2 місяці тому

    Moments at 9:00 are so beautifull

  • @rodbennett
    @rodbennett 3 місяці тому +1

    I am not sure if many Calc3 students would just know that limit in Q3. I stopped and proved it using the definition of a limit - which is a cool and easy exercise, but in real life it would have been l'hopitals for me as well.

    • @CalculusIsFun1
      @CalculusIsFun1 2 місяці тому

      I’m assuming you are talking about the x = 0 case. That’s something you’d learn in calculus I. Since (1 - cos(x))/x is 0 that one would have been -1 * 0 which is still 0.

  • @Anmol_Sinha
    @Anmol_Sinha 2 місяці тому

    For the 6th limit, can't we just take y=kx and apply l'hopitals? This approach also givez DNE for the limit

  • @markerguy
    @markerguy 3 місяці тому +2

    The first time during the premiere period!

  • @aaryavbhardwaj6967
    @aaryavbhardwaj6967 3 місяці тому +1

    Hi what abt in Q2 when x=0 can't y approach from 0- I.e. if 0 has neg power then the lim is ♾️?

  • @otekpreketek
    @otekpreketek 3 місяці тому +1

    When should we ideally use L'hopital's Rule?

    • @aaryavbhardwaj6967
      @aaryavbhardwaj6967 3 місяці тому +2

      0/0 Or ♾️/♾️ in single variable

    • @otekpreketek
      @otekpreketek 3 місяці тому

      ​​​@@aaryavbhardwaj6967I know, but in this video 8:35 , why not ideal to do L'hopital's rule?
      When we calculate the limit of two variables along a curve, doesn't it become the limit of one variable?
      However, after watching several other videos from BPRP, L'hopital's rule was indeed the last option.

    • @aaryavbhardwaj6967
      @aaryavbhardwaj6967 3 місяці тому +1

      @@otekpreketek No in the e^x limit we can definitely use Lhopitals. It is just a direct way used by Bprp without differentiating.
      In the cos y limit, Lhopitals can be used but is not ideal as while u find d/dx fos cos the cos h-1/h appears so to differentaite that u have to know d/dx cosx = -sinx. This leads to a loop and has to be proved by geometry to which u can find various videos.
      So Lhopitals can definately be used but is not ideal in 2nd case.

  • @aaryavbhardwaj6967
    @aaryavbhardwaj6967 2 місяці тому

    Hi can anyone pls twll me that why
    Integral of tanx= ln|sec x|+C
    But shouldn't integral of tanx = -ln|cos x|

    • @darkmask4767
      @darkmask4767 2 місяці тому +2

      secx is 1/cosx and by log properties ln(secx)=ln(1/cosx)=-ln(cosx). So they are the same

  • @netanelkomm5636
    @netanelkomm5636 2 місяці тому

    You are late :)) I just finished my exam. Hope it'll be alright. Or perhaps I am late cause you posted this 2 weeks ago😂

  • @Will-Ch
    @Will-Ch 3 місяці тому +1

    no entiendo que hablas pero veo tus videos son interesantes jajaja :D