6 methods of evaluating the limit of a multivariable function (calculus 3)

Поділитися
Вставка
  • Опубліковано 19 січ 2025

КОМЕНТАРІ • 43

  • @bprpcalculusbasics
    @bprpcalculusbasics  5 місяців тому +1

    How to show nonexistence: ua-cam.com/video/yGPsofTdtQw/v-deo.htmlsi=iPH8WT3GM-nsgFcA

  • @NixelKnight
    @NixelKnight 6 місяців тому +34

    Thanks you so much! I don't have to take Calc 3 at my university, but I've always wanted to learn it. Your videos have been so helpful for me and I really appreciate it!

  • @fireballman31
    @fireballman31 6 місяців тому +35

    The polar blooper lol

  • @IisChas
    @IisChas 4 місяці тому +2

    I laughed out loud at 15:30 when you drew the frowny face saying that there was no conclusion. I don’t know what it was, but it just got me.

  • @Vernonnotyourman
    @Vernonnotyourman 6 місяців тому +40

    forgot to edit the middle part😂😂

    • @SuryaBudimansyah
      @SuryaBudimansyah 6 місяців тому +1

      @@Vernonnotyourman It's basically becoming a feature in his channels

  • @bprpcalculusbasics
    @bprpcalculusbasics  6 місяців тому +10

    Be careful when we use the polar method:
    ua-cam.com/video/gL2fzELFFwQ/v-deo.html

    • @leonardobarrera2816
      @leonardobarrera2816 6 місяців тому +2

      Thank for not editing that
      I appreciate that
      (Not sarcastic)

  • @Alliban59
    @Alliban59 28 днів тому

    Another possibility for #2: Consider the denominator (i.e. a^2-b^2) as the result of (a+b)*(a-b) (plus-minus binomial formula). (a-b) is given in the numerator as well, thus both cancel each other. 1/(a+b) remains or the denominator equals both sqare roots added.

  • @شعرکوتاه-ع7ظ
    @شعرکوتاه-ع7ظ Місяць тому

    Thank so much 🎉

  • @Gabes1321
    @Gabes1321 5 місяців тому +3

    At 18:08 why can’t you just substitute r=0 into the bottom then leave it as (rcos^3@)/cos^2@ then cancel out the cos to get rcos@ then substitute r=0 again to get the limit as 0?

    • @krithikkumar9887
      @krithikkumar9887 5 місяців тому

      Again what if theta is pi/2, then u can't cancel cos

    • @Gabes1321
      @Gabes1321 5 місяців тому

      @@krithikkumar9887 two things. Doesn’t cos^2(@)/cos^2(@) approach 1 as @ approaches pi/2 anyway? Also as @ is an introduced variable, I thought we were allowed to cancel?

  • @eduardomarcicnetomarcic3511
    @eduardomarcicnetomarcic3511 6 місяців тому

    Thank you very much! Wonderful

  • @EmmanuelGiouvanopoulos
    @EmmanuelGiouvanopoulos 5 місяців тому +1

    L'Hopital's rule is haunting this man.

  • @DirectedArt
    @DirectedArt 2 місяці тому +1

    I still have nightmares with Epsilon-delta proofs in multivariable calculus

  • @thepotato1232
    @thepotato1232 6 місяців тому +4

    Can someone explain me why (e^2x - 1)/x is equal to f'(0)? ( I only know math up to derivatives)

    • @t.b.4923
      @t.b.4923 6 місяців тому +8

      one definition of derivatives is lim x->x_0 (f(x)-f(x_0))/(x-x_0). Plugging is 0 for e^2x we get: lim x->0 f(x)-f(0)/x-0 which is thr expression above

    • @thepotato1232
      @thepotato1232 6 місяців тому

      ​@@t.b.4923 I see now,thank you

  • @darth159
    @darth159 6 місяців тому

    Is there any way to tell whether you should start using the path method to show the limit does not exist or start the Squeeze Theorem?

  • @aubertducharmont
    @aubertducharmont 6 місяців тому +7

    My way: set x=y, then use the l'Hopital's rule. It is probably not mathematically correct, but it works, if both x and y are aproaching the same value.

    • @projectseven2727
      @projectseven2727 6 місяців тому +5

      Just a problem: there's a possibility that the limit does not exist. The issue with multivariable derivatives is that there are infinite directional limits and not just left and right sided. It is possible that limit x=y is not the same as lim x=0 or y=0 etc

  • @joshuahillerup4290
    @joshuahillerup4290 5 місяців тому +1

    Has there been a video showing where the limit of a product exists, but the product of the limits does not exist?

  • @davidcroft95
    @davidcroft95 6 місяців тому +6

    Is there an equivalent theorem of L'Hopital rule in calc 3?

  • @Bedoroski
    @Bedoroski 6 місяців тому +1

    8:18 another new tool learnt today

  • @SuryaBudimansyah
    @SuryaBudimansyah 6 місяців тому +6

    Multivarible function is multiterrible

    • @IoCalisto_
      @IoCalisto_ 6 місяців тому +1

      Multiterrible calculus 😔

  • @l9day
    @l9day 6 місяців тому +1

    Now number 5, the larch.... the larch

  • @איתיריכרדסון
    @איתיריכרדסון 6 місяців тому +3

    He wrote squezze lol

  • @chonkycat123
    @chonkycat123 6 місяців тому +2

    Why can’t L’Hopital’s rule be used for the substitution method? It’s single-variable?

    • @griffinf8469
      @griffinf8469 6 місяців тому

      You can use L’Hopital’s rule and you’ll get the same answer. The derivative of sin(t) is cos(t) and the derivative of t is 1. Plug in 0 to t and you’ll see that cos(0) is 1.

    • @chonkycat123
      @chonkycat123 6 місяців тому +1

      @@griffinf8469 yeah, that’s how I would approach it. Just curious as to why bprp said you couldn’t use it

    • @chrisyoutube08
      @chrisyoutube08 5 місяців тому +1

      ​@@chonkycat123he doesn't like using it for some reason, I've noticed it in other videos as well

    • @gileadedetogni9054
      @gileadedetogni9054 5 місяців тому +1

      Hi man, I can explain to you. The reason is that the limit of sin(h)/h as h goes to 0 appears on the derivative of sin(x) by definition. So, to know that the derivative of sin(x) is cos(x), you need to solve that limit first, resulting in a cyclic thing, get it?

    • @Brid727
      @Brid727 5 місяців тому

      @@griffinf8469 yeah for sure, but what if you were to do the derivative of sin(t) using the limit definition? You would find this limit while working it out, and then you'll be tempted to use L'Hopital's rule. But that just doesn't make sense because you are taking tyhe derivative of sin(t) in the first place. That's why you have to find other ways to do it, preferably the squeeze/sandwich theorem

  • @phill3986
    @phill3986 6 місяців тому

    😊 👍

  • @aggking7034
    @aggking7034 6 місяців тому

    First