A cool iterated integral

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 39

  • @mcalkis5771
    @mcalkis5771 2 місяці тому +13

    I was about to comment that thid is probably the most straightforward integral you've solved, but then dilogarithms appeared.

    • @sergiokorochinsky49
      @sergiokorochinsky49 2 місяці тому

      Yes... dilogarythm appeared, and leaving the original integral as a "fancy constant" plus another integral is the same as not-solving the original integral. I'm disappointed.

    • @Grecks75
      @Grecks75 2 місяці тому +1

      ​@@sergiokorochinsky49nah, the integral was solved alright, reducing it to well-known constants and a special function invocation. Maybe it wasn't the "nice" result you expected?

  • @syamantagogoi
    @syamantagogoi 2 місяці тому +1

    Really an awesome integral you solved. Your authority and articulations on solving these type of difficult problems is certainly extraordinary

  • @CM63_France
    @CM63_France 2 місяці тому +2

    Hi,
    1:53 : maybe we know by heart that the antiderivative of ln x is x ln x - x 🙂
    "terribly sorry about that" : 1:03 , 1:57 , 3:36 , 4:32 , 4:40 , 6:53 , 7:33 , 10:19 ,
    "ok, cool" : 1:09 , 2:17 , 3:40 , 5:09 , 10:26 .

  • @orionspur
    @orionspur 2 місяці тому +14

    0:05 Threesome = Triple integral with exactly one log. 🤔✅

    • @Anonymous-Indian..2003
      @Anonymous-Indian..2003 2 місяці тому

      It's not even double meaning, it's direct meaning

    • @Anonymous-Indian..2003
      @Anonymous-Indian..2003 2 місяці тому

      💀☠️🌚

    • @maths_505
      @maths_505  2 місяці тому +5

      🤣🤣🤣🤣🤣
      My subscribers are the best math people on UA-cam....no doubt😂😂

  • @eu7059
    @eu7059 2 місяці тому +4

    You should add a +1ln1 to the result to complete the stair, and if you’re really felling fancy today, you can even add -0ln0 and “define” it as its limit when x goes to 0

    • @maths_505
      @maths_505  2 місяці тому

      OHHHHH DAMN I AM SO MAD RN FOR NOT THINKING ABOUT THAT😭

  • @jaimequerol27182
    @jaimequerol27182 2 місяці тому +14

    Video about Aery's differential equation when?

    • @maths_505
      @maths_505  2 місяці тому +6

      OHHHH I FORGOT ABOUT THAT ONE!
      Thanks for the reminder homie

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 2 місяці тому

      Will it also cover the incomplete Airy functions/Scorer's functions Gi(x) and Hi(x), or just the complete Airy functions Ai(x) and Bi(x)? I know Gi(x)+Hi(x)=Bi(x), but they're still kind of significant.

    • @zlodevil426
      @zlodevil426 2 місяці тому

      @@maths_505I love your honesty lol

  • @SuperSilver316
    @SuperSilver316 2 місяці тому +1

    Good practice with these is to use the inversion formula of the Dilogarithm to write Li_2(-2) in terms of Li_2(-1/2) and other terms, but this is also fine!

  • @MrWael1970
    @MrWael1970 2 місяці тому

    Very nice integral. Thank you

  • @pranavaggarwal7965
    @pranavaggarwal7965 2 місяці тому +6

    I am the first one to look out this cool integral with my eyes😢

  • @Grecks75
    @Grecks75 2 місяці тому +1

    Haha, that was awesome! 🎉
    I was afraid I maybe couldn't follow, but it turned out to be no problem (pausing the video here and there to catch up, because you are way too fast for my brain cells, haha).
    Until you unexpectedly and almost casually pulled out the dilogarithm and the Dirichlet Eta function. There you got me! (As a regular viewer of your channel, at least I happen to know that this stuff exists.)
    One small point: Maybe you could add an extra pair of parentheses around the integrand when there is a sum in the integral, so we can infer the extent of the integral better? This would help with better following all this mind-f*ck, haha. 😂

    • @maths_505
      @maths_505  2 місяці тому +1

      Pretty soon you're gonna be solving them from the thumbnail (still watch the video though so I can get views😭😭😭)

  • @saraandsammyb.9599
    @saraandsammyb.9599 2 місяці тому

    Yo Kamaal!! Have you ever thought about using spherical or cylindrical coordinates in triple integrals in a vid? Would that make some integrals easier?

  • @gesucristo0
    @gesucristo0 2 місяці тому +3

    How to deal with the fact that the di-logarithm converges for z in the unit circle and -2 clearly doesn’t belong in there?

    • @gesucristo0
      @gesucristo0 2 місяці тому

      @@shieldmytears but 2^2=4>1, so…

    • @SuperSilver316
      @SuperSilver316 2 місяці тому +2

      You can use an inversion formula for the dilogarithm
      Li_2(-2) = -Li_2(-1/2)-pi^2/6-ln^2(2)/2

    • @vascomanteigas9433
      @vascomanteigas9433 2 місяці тому

      Analytical continuation goes brrrr... 😂
      Using the integral form of dilog are easy to do this step.

    • @maths_505
      @maths_505  2 місяці тому

      @vascomanteigas9433 indeed

  • @acpwnd2020
    @acpwnd2020 2 місяці тому

    Bro, you’re so clever. How do you find/discover these problems? Is there a resource I can use to practice problems as challenging as these?

    • @maths_505
      @maths_505  2 місяці тому +1

      @@acpwnd2020 this is from the Romanian mathematical magazine. Problem by Ankush Kumar parcha

  • @sebastianlopezgiraldo21
    @sebastianlopezgiraldo21 2 місяці тому

    Hey bro do you have any book? I'd like to know if you have written a math book

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 місяці тому

    ln(27/4)-3+INT(ln(2+z)/(1+z)..z=0...1)

  • @fengshengqin6993
    @fengshengqin6993 2 місяці тому

    Not very satisfied with Li2(-2) ,what is it exactly ?

    • @Grecks75
      @Grecks75 2 місяці тому

      A certain real number, although you probably don't want to hear that. 😉 Counterquestion: What exactly is ln(3)? 🤔

  • @monishrules6580
    @monishrules6580 2 місяці тому

    Solve schrodinger equation

  • @元兒醬
    @元兒醬 2 місяці тому

    OK, cool
    Terribly sorry about that

  • @n8cantor
    @n8cantor 2 місяці тому

    [Rammstein voice]
    X
    XY
    XYZ

  • @alvercury
    @alvercury 2 місяці тому

    You should be terribly sorry about being terribly sorry for like a gazillion times in a single video

    • @maths_505
      @maths_505  2 місяці тому +1

      Ah yes ofcourse terribly sorry about that