A mesmerizing calculus journey

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 66

  • @Slopynthia
    @Slopynthia 2 місяці тому +46

    one time i got hit by a bus and Maths505 integrated me back to health. i owe him my life

    • @maths_505
      @maths_505  2 місяці тому +6

      😭😭😭

    • @spinothenoooob6050
      @spinothenoooob6050 2 місяці тому +2

      That's so nice of him, now he's my favourite after Leonard goatler

    • @unholycrusader69
      @unholycrusader69 2 місяці тому

      ​@@spinothenoooob6050 more like LAMEnard Euler hah

  • @CM63_France
    @CM63_France Місяць тому +2

    Hi,
    "terribly sorry about that" : 1:26 , 2:21 , 4:14 ,
    "ok, cool" : 4:23 , 5:11 .

  • @richierob62
    @richierob62 2 місяці тому +37

    I’m beginning to think you might figure out backwards time travel.

  • @maxvangulik1988
    @maxvangulik1988 2 місяці тому +19

    this integral uses:
    •taylor series
    •Laplace transform
    •complex partial fractions
    •digamma
    •trigamma
    •reflection/duplication formulas
    •hyperbolic functions

    • @maxvangulik1988
      @maxvangulik1988 2 місяці тому +5

      or whatever the hell he did at 4:35

    • @abdulllllahhh
      @abdulllllahhh 2 місяці тому

      Missing Cauchys residue theorem

    • @spinothenoooob6050
      @spinothenoooob6050 2 місяці тому +1

      🤤🤤🤤

    • @maxvangulik1988
      @maxvangulik1988 2 місяці тому

      @@abdulllllahhh i did not use cauchy's residue theorem when solving this integral.

    • @abdulllllahhh
      @abdulllllahhh 2 місяці тому

      @@maxvangulik1988 no I’m saying the integral is missing crt to be perfect

  • @doronezri1043
    @doronezri1043 2 місяці тому +6

    Great video! Loved the differentiation under the integral sign (it's actually a property of Laplace Transform) 😊

  • @aravindakannank.s.
    @aravindakannank.s. 2 місяці тому +5

    this reminds of the old days where u use multiple results to make a monstrous integrals to submit to u😊😊

  • @SkEi-y3b
    @SkEi-y3b 2 місяці тому +2

    The way you make solving math fun is amazing

  • @ARUPBERA-ky6mq
    @ARUPBERA-ky6mq 2 місяці тому +2

    another method can be by assuming a function in alpha :cos(alpha x)ln(1-e^-x)dx from 0 to infinity and then expanding series of "ln(1-e^-x)=summation of (e^-x)^r/r where r ranges from 1 to infinity using this to get to a function a which i calculated using integartion by parts and it simplifies as a cool result 1/(a^2+r^2) and then differrentiating the function with respect to a and putting a=1 we get the same result

  • @AlexGNR
    @AlexGNR 2 місяці тому +1

    The fact I could follow you both scares me and makes me feel super smart for some reason. A bit of practice and I might just be able to reproduce these things.
    Love your video's mate!

    • @maths_505
      @maths_505  2 місяці тому +1

      Thanks mate
      And yeah a bit of practice everyday goes a long way

    • @Grecks75
      @Grecks75 2 місяці тому

      ​@@maths_505Yeah, practice is an underrated superpower. 😃
      In Germany we say: Übung macht den Meister. 😊

  • @raghavendraPi
    @raghavendraPi 2 місяці тому +2

    Nice one
    Bro, a request , while starting the solution could you elaborate a little more on thought process, what propped into your mind and why you rejected that.
    An intuitive feel for the problem basically

    • @maths_505
      @maths_505  2 місяці тому +1

      That's a good idea

  • @augustuskaufmann7263
    @augustuskaufmann7263 2 місяці тому +8

    how did you become so good at this? what books did you read (or other resource) to learn all these integration techniques and strategies? I haven’t seen any of this in a calculus textbook.
    Thank you so much, and great video as usual🙏

    • @julioguilarte9438
      @julioguilarte9438 2 місяці тому

      interested on this as well

    • @daddy_myers
      @daddy_myers 2 місяці тому

      It's quite simple. There is a direct linear relation between a) fucking around, and b) finding out. I'm sure you can see where this is headed, but in short, you just fuck around and find out.

    • @maths_505
      @maths_505  2 місяці тому +2

      Exactly 💯

    • @spinothenoooob6050
      @spinothenoooob6050 2 місяці тому +2

      I believe that it's practice, if you always do integrals all the time(like me), you would just do it instinctively when you look at the integral(from my own experience). For example, if in my 12th grade(last year) my tr asked int_0-1 (cosx + sinx/1+sin2x)dx then I will solve it in like 4mins max and spelled the answer "ln(sinx + cosx)". I started learning calculus at the end of 11th grade but practice and my love towards maths. I think he is experiencing the same feelings as me😊😊😊

  • @Nottherealbegula4
    @Nottherealbegula4 2 місяці тому +1

    This has to be one of my faovrite videos of yours

    • @maths_505
      @maths_505  2 місяці тому

      It's one of my favourite integrals...little bit of everything

  • @RBRB-hb4mu
    @RBRB-hb4mu 2 місяці тому +3

    I’ve solved Einstein’s “Spooky Action” entanglement riddle. Space is being pressed up into your face creating the illusion of time. Time is but an illusion……..

  • @AA-ou1vi
    @AA-ou1vi 2 місяці тому

    5:19 “First we need to figure out a way to get a square around this thing and that’s pretty easy. All we have to do is to differentiate”
    All ways differentiate! Questions later...

  • @AyushRajput-xw2ru
    @AyushRajput-xw2ru 2 місяці тому +4

    The intro voice was 😂 like Mr kamaal sobered his vocal in wine 😂😂

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 місяці тому +1

    I=-2(1/4+1/25+1/100+1/289+1/676+1/1369+1/2500......=-0,61367...ho usato lo sviluppo di ln(1+x) e sinx=Im(e^ix)

  • @AA-ou1vi
    @AA-ou1vi 2 місяці тому

    Nicely done with health dose of tasteful subtle humor!

  • @mathscribbles
    @mathscribbles 2 місяці тому

    Jeez dude, this is art 🎨

    • @maths_505
      @maths_505  2 місяці тому

      "how long have you been staring at this"
      Me: yes

  • @yoav613
    @yoav613 2 місяці тому +1

    Very nice! At the end it should be with negative sign -pi/2coth(pi). Oh now i saw you fixed it😅💯💯

  • @waarschijn
    @waarschijn 2 місяці тому +1

    6:55 forgot the square

  • @achrafhattafi4698
    @achrafhattafi4698 2 місяці тому +1

    As usual , just hero

  • @turtledudes3843
    @turtledudes3843 2 місяці тому +1

    Good problem!

  • @xanterrx9741
    @xanterrx9741 2 місяці тому

    Great video , thanks for making it

  • @slavinojunepri7648
    @slavinojunepri7648 18 днів тому

    Fantastic

  • @xenumi
    @xenumi 2 місяці тому

    So nice!

  • @transcendenceistaken
    @transcendenceistaken 2 місяці тому +2

    What does any of this mean

  • @MrWael1970
    @MrWael1970 2 місяці тому

    Very nice. Thanks

  • @ericknutson8310
    @ericknutson8310 2 місяці тому

    how do you justify d\dk when k is discrete variable?

    • @maths_505
      @maths_505  2 місяці тому

      Treat k as continuous obviously....or just replace k by t and at the end substitute k=t

  • @spinothenoooob6050
    @spinothenoooob6050 2 місяці тому +1

    ❤❤❤

  • @Kanekikun007
    @Kanekikun007 2 місяці тому

    What hyperbolic tan cot means?

    • @Grecks75
      @Grecks75 2 місяці тому +1

      Hyperbolic functions, never heard of? Those are elementary functions, very similar to their circular counterparts (sin, cos, tan, cot, sec, csc), but they work with the (unit) hyperbola instead of the (unit) circle. For example, they can be used to parametrize hyperbolas, and they have very similar properties to the trig functions, albeit with small differences. For example, "Pythagoras' theorem" for hyperbolas reads: (cosh(x))^2 - (sinh(x))^2 = 1, compared to (sin(x))^2 + (cos(x))^2 = 1. Very interesting functions, in many respects.

    • @Kanekikun007
      @Kanekikun007 2 місяці тому

      @@Grecks75 trig functions are for unit circle and similarly these are for hyperbola oh nice ,but why do we need em?

    • @Grecks75
      @Grecks75 2 місяці тому +1

      @@Kanekikun007 As I said, they are used geometrically with anything related to hyperbolas, but they also turn up in almost every other part of mathematics, just like the trigonometric functions. They also play an important role in physics, in Special Relativity.

    • @anonymous_0416
      @anonymous_0416 2 місяці тому

      sinh(x) = (exp(x) - exp(-x))/2
      cosh(x) = (exp(x)+exp(-x))/2
      tanh(x) = sinh(x)/cosh(x)
      Coth(x) = 1/tanh(x)
      Cosech(x) = 1/sinh(x)
      Sech(x) = 1/cosh(x)

  • @SanAleksiusII
    @SanAleksiusII 2 місяці тому

    Good stuff

  • @yurfwendforju
    @yurfwendforju Місяць тому

    I think you lost a negative sign on the way but I am not sure

  • @Leonhardeuler2219
    @Leonhardeuler2219 2 місяці тому

    Okay, cool 🎉🎉

  • @zubii2017
    @zubii2017 2 місяці тому

    A little bit of this a little bit of that aaa video

  • @biscuit_6081
    @biscuit_6081 2 місяці тому

    Comment for the algorithm:

  • @albert3344
    @albert3344 2 місяці тому

    Oooookey Cooooool ❤

  • @sethdurais2477
    @sethdurais2477 2 місяці тому +2

    First time being first!

  • @zamplify
    @zamplify 2 місяці тому

    Twenty-six seconds on "like and subscribe" absolutely ridiculous