AN OVERPOWERED SUBSTITUTION FOR INTEGRALS: int(0,1) ln(1-x^2)/(1+x^2)

Поділитися
Вставка
  • Опубліковано 5 січ 2025

КОМЕНТАРІ •

  • @CM63_France
    @CM63_France 2 місяці тому +10

    Hi,
    "ok, cool" : 1:50 , 5:09 , 6:09 , 7:22 , 10:52 , 11:39 , 10:56 ,
    "terribly sorry about that" : 6:37 , 8:58 , 10:46 , 11:56 .

    • @biscuit_6081
      @biscuit_6081 2 місяці тому

      11:39 is terribly sorry about that, 10:56 is nothing
      Great job tho

    • @CM63_France
      @CM63_France 2 місяці тому

      @@biscuit_6081 Ok, thanks

    • @cyktart7225
      @cyktart7225 2 місяці тому

      The only reason to like france

  • @xanterrx9741
    @xanterrx9741 2 місяці тому +3

    Great video , thanks Kamaal for your work hard work that you've puten into this and other videos .

  • @Samir-zb3xk
    @Samir-zb3xk 2 місяці тому +2

    i solved by doing x = tan(θ) then using identity : 1 - tan²(θ) = 2tan(θ) / tan(2θ) and then split up log
    then use series expansion for ln(tan(θ)) which can be obtained from from getting the Fourier series for ln(sin(θ)) and ln(cos(θ)) then taking their difference

  • @gambitito
    @gambitito 2 місяці тому +10

    Integral bounds jumpscare 1:40

  • @MrWael1970
    @MrWael1970 2 місяці тому

    Thanks for your innovative integrals.

  • @SanAleksiusII
    @SanAleksiusII 2 місяці тому +12

    Greetings from future fields medalist

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 2 місяці тому +6

      What are you going to do that will win you the Fields Medal?

    • @zlodevil426
      @zlodevil426 2 місяці тому

      @@xinpingdonohoe3978 math

  • @sundaresanabishek5127
    @sundaresanabishek5127 2 місяці тому

    Heyy Brooo fan from Sri Lanka ❤🎉

  • @davidblauyoutube
    @davidblauyoutube 2 місяці тому

    What about convergence of the series? The sum of 1/k * ln 2 is the harmonic series...

    • @maths_505
      @maths_505  2 місяці тому +2

      Well we can't split up the sum using linearity but it should work in the form I've presented where we have a difference of terms. An example of where something like this works is the series representation of the digamma function.

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 місяці тому

    Con semplici calcoli si arriva a I=-(1/2)INT(1+cosθ)dθ..θ=0..π/2...poi non ricordo come si risolve quell integrale..ho provato con β e Γ..ma non porta a niente..ho rifatto i calcoli..I=(-πln2/4)-2((1/2)(-πln2/2+G)=πln2/4-G

  • @satyam-isical
    @satyam-isical 2 місяці тому

    Love from india

  • @lokithe.godofmischief
    @lokithe.godofmischief 2 місяці тому +2

    Ques i found, which seemed impossible
    Let f(x)=(x⁴)+(x³)+(x²)
    Let y depict the inverse of the function f(x)
    Then, evaluate the integral from (lower bound)2A to (upper bound)8A of (1/(y²+y⁴)) with the limit A tends to ♾️infinity
    The variable of integration is obviously dx, as y will be a function of x only

    • @lokithe.godofmischief
      @lokithe.godofmischief 2 місяці тому

      @davidblauyoutube yeah it must be of that form, cause in the original question it said that the ans is lnα, find α. Do share the solution pls

  • @MrElnath
    @MrElnath 2 місяці тому +1

    Why at 1.40 bounds becomes (0,1) instead remains (0, inf) ?

    • @Grecks75
      @Grecks75 2 місяці тому

      Because bounds (0, inf) was only by mistake.

    • @MrElnath
      @MrElnath 2 місяці тому

      Right ! I watched the video again

  • @holyshit922
    @holyshit922 2 місяці тому

    u=(1-x)/(1+x) substitution twice
    Yes I would calculate it this way
    First way is too complicated
    First step can be ln(1-x^2) = ln(1-x) + ln(1+x)
    but it will not simplify integral a lot

  • @tridivsharma2342
    @tridivsharma2342 2 місяці тому

    isnt it much easier to just split the integral and x=tan(\theta)

    • @Samir-zb3xk
      @Samir-zb3xk 2 місяці тому

      yea thats what i did, you will then have to use a series expansion for ln(tan(x)), which can be obtained by getting Fourier series for ln(sin(x)) and ln(cos(x)) then taking their difference

  • @mau9639
    @mau9639 2 місяці тому

    maht

  • @Grecks75
    @Grecks75 2 місяці тому +1

    An infinite series of ridiculous digamma terms (and other stuff)? Are you series?! 🤣

  • @JakePinedo-ns4yu
    @JakePinedo-ns4yu 2 місяці тому

    Nice advertising kamaal

  • @Tosty159
    @Tosty159 2 місяці тому

    First

  • @jpf119
    @jpf119 2 місяці тому +3

    Please stop OKcooling your videos

    • @maths_505
      @maths_505  2 місяці тому +12

      @@jpf119 that's the primary reason why almost 60k people have subscribed in the first place.