2023 MIT Integration Bee - Regular Season

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 120

  • @jonahgrigoryan
    @jonahgrigoryan Рік тому +177

    I wish someone could do something like this online, where anyone can qualify and then be part of this, dont know how many people would be interested though

    • @МаркТурцынский
      @МаркТурцынский Рік тому +7

      Yes, that would be a nice idea, Johan.

    • @МаркТурцынский
      @МаркТурцынский Рік тому +1

      I didn't like quite a lot, the problems of this year are much more technical and you need to spend more time (for example) to understand the graph of function. Such problems need min 4 min for solving.

    • @jonahgrigoryan
      @jonahgrigoryan Рік тому

      @@МаркТурцынский you’re right, I was only able to solve 7 of the problems in under 2 min, but bringing this mainstream in my opinion would attract a lot of people to calculus

    • @МаркТурцынский
      @МаркТурцынский Рік тому +4

      @@jonahgrigoryan You can compare with the examples from previous competitions. They previously made much more focus on the ideas of integration not on some supplementary things like graphs. This is the overcomplexity from my point of view. May be the authors were not the same. May be they should give different time to different examples.

    • @anyihe643
      @anyihe643 Рік тому +1

      I would be interested, cue me if you come up with something like this

  • @boysen01
    @boysen01 Рік тому +43

    I think it could be interesting to see what would happen if the allotted time was double of what it is. It would make the competition less based on a lucky first approach, while still making sure the proper winners are those who can integrate fast

    • @friedrichmyers
      @friedrichmyers Рік тому +3

      2 minute is very fast to solve integrals. I think it should be atleast 5-10 minutes per problem.

  • @adandap
    @adandap Рік тому +73

    Man, in the two minutes available these are brutal. None are impossible to do, but most involve lots of fiddly bits you have to keep track of. (Cue all of the 'ha, in my country we do these before we can walk' comments.)

    • @anyihe643
      @anyihe643 Рік тому +1

      These are not hard though

    • @anyihe643
      @anyihe643 Рік тому +1

      It is just the time that makes it hard, if it is 3-5 min, it is gonna be so easy

    • @lechute8635
      @lechute8635 Рік тому +7

      in my country we do these before we can walk

    • @maxgeorge1463
      @maxgeorge1463 Рік тому +9

      In America, we clearly can do these before we walk

    • @Sir_Isaac_Newton_
      @Sir_Isaac_Newton_ Рік тому +1

      ​@@maxgeorge1463 😢

  • @scipio42
    @scipio42 Рік тому +5

    I enjoy watching stuff like this too much, it's so good

  • @The1RandomFool
    @The1RandomFool Рік тому +23

    I can do most of these, but only a few I could do in the allotted time. Number 13 was a tricky one. Although I don't think the integrand can be stated in closed form, its inverse can on that interval. Integrate along the y-axis instead of the x-axis.

  • @u.v.s.5583
    @u.v.s.5583 Рік тому +25

    Having seen the finals, so strange to see the future winner struggling and slowly getting mad

  • @sk-702
    @sk-702 Рік тому +6

    56:13 that was so wholesome and the guy took it like a champ hahaha

  • @berdore
    @berdore Рік тому +10

    I feel so much better about my math knowledge after watching this. 😂

  • @aiien8768
    @aiien8768 11 місяців тому +3

    this takes me back when my friend won the 2006 mit integration bee !!!!

    • @ivoryas1696
      @ivoryas1696 10 місяців тому

      @aiien8768
      Neat! How long did you know him?

  • @maiai2992
    @maiai2992 Рік тому +4

    I would had loved to participate, in event like this back at my university days, if we had one at it. But we may only have 5 participates, it is only in university's like MIT were the quality of teaching and quality of students is so high.

  • @mohammadalkousa2856
    @mohammadalkousa2856 Рік тому +9

    Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023"
    You can simply find it!

    • @danielespinosa869
      @danielespinosa869 Рік тому +1

      Can you send me the link?

    • @mohammadalkousa2856
      @mohammadalkousa2856 Рік тому +1

      @@danielespinosa869 I think it is forbidden to send links in the comments. But by the title you can simply find it

  • @surajdolui4068
    @surajdolui4068 Рік тому +62

    Anyone Noticed Chirag Falor
    He is the Air 1 For jee Advance 2020

    • @u.v.s.5583
      @u.v.s.5583 Рік тому +5

      And he is not the Grand Integrator too!

    • @12ha
      @12ha Рік тому +4

      @@u.v.s.5583 woh toh newton h india ka

    • @Anantlahamge07
      @Anantlahamge07 Рік тому +1

      Yes

    • @nileshkujur8025
      @nileshkujur8025 Рік тому +21

      @@12ha Dumb thinking. Chirag is just a topper. While Newton was one of the greatest minds throughout human history. Being a topper is not a requisite for doing something extraordinary and impossible in life.

    • @M1551NGN0
      @M1551NGN0 Рік тому

      WHAT?! *WHAT?!?*

  • @FanbilousGamer
    @FanbilousGamer Рік тому +4

    Must continue Posting ...🙏🙏 Incredible

  • @clvsidy
    @clvsidy Рік тому +3

    11:18 lol she’s snapping it to her friends

  • @silouy4259
    @silouy4259 Рік тому +5

    In 2 min it's really hard to do these especially when you are not trained i hope that they practice beforehand

  • @partevstepanyan5587
    @partevstepanyan5587 Рік тому +1

    problem 14 int (floor x)x(ceiling x) from 0 to 100 (int 0*1*x dx from 0 to 1)+(int 1*2x dx from 1 to 2)+(int 2*3x dx from 2 to 3)+.....+(int (n-1)*n xdx from n-1 to n) where n=100.
    I=sum (n-1)n(n^2-(n-1)^2)*(1/2) from 1 to 100 (1/2)sum (n-1)n(2n-1) from 1 to 100 (1/2)*(sum 2*n^3-3n^2+n) from 1 to 100 (1/2)*(2*((n-1)n/2)^2-3*n(n+1)(2n+1)/6+n(n+1)/2))=n(n+1)/4(n(n+1)-(2n+1)+1)=(1/4)*n(n+1)(n^2-n)=(1/4)*n^2(n+1)(n-1)=1/4*n^2(n^2-1)=(n^4-n^2)/4=(100^4-100^2)/4

    • @digxx
      @digxx Рік тому

      Sure, because everyone knows sum(n^3) of the top of their head...

  • @AlonsoRules
    @AlonsoRules Рік тому +10

    This should be an Olympic sport

  • @u.v.s.5583
    @u.v.s.5583 Рік тому +59

    "Behind every great unsolved integral there is a MIT mind!"

    • @maxgeorge1463
      @maxgeorge1463 Рік тому +6

      L take

    • @divyaraval1909
      @divyaraval1909 Рік тому

      XD

    • @M1551NGN0
      @M1551NGN0 Рік тому +4

      Nah homie problem 5 is in our textbooks in Indian schools

    • @pendragon7600
      @pendragon7600 Рік тому +5

      ​@@M1551NGN0 Indian people talk so much shit and there is nothing to back it up. Yeah these problems should be doable for anybody who has taken calculus, no kidding. The time pressure is what makes these hard.

    • @M1551NGN0
      @M1551NGN0 Рік тому +5

      @@pendragon7600 and we've had proofs for everything until your European Bros declared Axiomatic proofs more important than Empirical proofs. And anyways i was referring to the inconsistency of the quote that the original person of this comment wrote by telling them politely that this is not exactly something that only MIT minds could do.

  • @SaImanKayani
    @SaImanKayani Рік тому +6

    What if they had the Triple Integration Bee?

  • @cato451
    @cato451 Рік тому +1

    It’s a good thing differential calculus is more important

  • @yanlicui3683
    @yanlicui3683 Рік тому +1

    Great job 👍

  • @YazminaMandez
    @YazminaMandez Рік тому

    This could be more like a challenge I guess or maybe an integration challenge in this class

  • @FanbilousGamer
    @FanbilousGamer Рік тому +2

    Loved it .

  • @NarutoUzumaki-jr5ir
    @NarutoUzumaki-jr5ir Рік тому +8

    Some of these questions are really easy for JEE aspirants.

  • @asamet2007
    @asamet2007 Рік тому

    17:38
    Pointing at each contestant: Wrong.. Wrong.. Wrong.. Wrong 😂

  • @Mathin3D
    @Mathin3D Рік тому +1

    These bee chess stole my icon!

  • @AbhishekKumar-vo9yu
    @AbhishekKumar-vo9yu Рік тому +1

    Anyone noticed anton trygub? He's a LGM on codeforces

  • @jaji666
    @jaji666 Рік тому +5

    Sorry for my ignorance, but how in the world do u integrate a min or max function?

    • @jeannie1920
      @jeannie1920 Рік тому +11

      draw or imagine the two functions being compared, then integrate one for x where it is greater (or smaller), and integrate the other for the rest of the x in the limits of integration. For the min part of Problem 3, integrate 2x from 0 until 1, then the other fraction gets smaller than 2x so integrate the fraction from 1 to 3. add the two togetter for the total integral of the min funciton.
      or conceptually, find the area under the highest (or lowest) of the two lines for any part of the graph

    • @jorgemunana9742
      @jorgemunana9742 Рік тому +3

      max( function1, function2 ) means you take, precisely, the maximum value between both functions in a determined interval. For example, consider the function max(x, 2-x). If you see the graph of both functions, or just make x=2-x, we can see they intersect in P(1,1). See that before x=1 (interval (-inf,1)) 2-x is bigger than x, so the function takes the values of 2-x. Same way, see that after x=1 (interval (1,inf)) x is bigger than 2-x, so the function takes the values of x. It's easier to think which function goes "over" the other on the graph. Now, for example, imagine you try to integrate from 0 to 2. So what we have to do is integrate from 0 to 1 the function 2-x (since it's bigger than "x") and sum that to the integral from 1 to 2 of x (since it's bigger than 2-x).
      Hope this helps 👍

  • @dulkithbatagoda14
    @dulkithbatagoda14 Рік тому +16

    Chinese are leading the MiT as well.Good job guys.

    • @anikm111
      @anikm111 Рік тому

      What about Indians

  • @Angelito082
    @Angelito082 Рік тому +2

    i didn't understand the first one ..!! what does "max(sinx,cox)" mean?

    • @jorgemunana9742
      @jorgemunana9742 Рік тому +5

      max( function1, function2 ) means you take, precisely, the maximum value between both functions in a determined interval. For example, consider the function max(x, 2-x). If you see the graph of both functions, or just make x=2-x, we can see they intersect in P(1,1). See that before x=1 (interval (-inf,1)) 2-x is bigger than x, so the function takes the values of 2-x. Same way, see that after x=1 (interval (1,inf)) x is bigger than 2-x, so the function takes the values of x. It's easier to think which function goes "over" the other on the graph. Now, for example, imagine you try to integrate from 0 to 2. So what we have to do is integrate from 0 to 1 the function 2-x (since it's bigger than "x") and sum that to the integral from 1 to 2 of x (since it's bigger than 2-x).
      Hope this helps 👍

  • @abhimanyu3704
    @abhimanyu3704 Рік тому +1

    1:08:58
    This one was easy why Noone could solve it?

  • @partevstepanyan5587
    @partevstepanyan5587 Рік тому +2

    Problem 13
    int sin(x-sin(x-sin(x- ...)))dx from 0 to pi/2+1. sin(x-sin(x-sin(x- ...)))=u
    sin(x-u)=u. x-u=arc sin(u) x=arc sin(u)+u dx=(1/((1-u^2)^(1/2))+1) if x=0 then u=0 if x= pi/2+1 then u=1 I=int u(1+1/((1-u^2)^(1/2))dx from 0 to 1 I=(u^2)/2 +int u/((1-u^2)^(1/2))dx=(u^2)/2-(1-u^2)^(1/2) from 0 to 1 I=1/2-(-1)=3/2

  • @animeboinod3002
    @animeboinod3002 5 місяців тому +3

    8:53 who else saw 16)Chirag Falor

  • @apz202
    @apz202 Рік тому +2

    i could do the first one in 10 minutes.

  • @adityagupta54
    @adityagupta54 Рік тому +2

    How to do Q4. I mean What I was doing was assuming it will continue till infinity so x=1-1/x etc. I want to know 1) why cant we extend it to infinity 2) how to solve it

  • @sanatandharma48
    @sanatandharma48 Рік тому +3

    18:05 😂😂😂

  • @steven-u7g
    @steven-u7g Рік тому

    What if I added a C constant, and my answer is right. Will they take my answe?

  • @basil9633
    @basil9633 Рік тому +1

    33:30 bro what is that

    • @satishchaudhary7978
      @satishchaudhary7978 Рік тому

      That (n r) represents nCr=n!/r!(n-r)!

    • @basil9633
      @basil9633 Рік тому

      @@satishchaudhary7978 no like the problem there is no line in the fraction

  • @PabloNicolásBischoff
    @PabloNicolásBischoff 2 місяці тому

    what is max(sin(x),sin(x))

  • @gauravsamant7374
    @gauravsamant7374 Рік тому

    Cant we just flip the denominator in 2nd ques and substitute the limits directly? 13:17

  • @adityagupta54
    @adityagupta54 Рік тому

    Also how to solve q18

  • @4bboys160
    @4bboys160 Рік тому +9

    In question 16 board no. 1 chirag falor
    jee advanced air 1

    • @Sa.m1498
      @Sa.m1498 Рік тому +5

      Red shirt?

    • @4bboys160
      @4bboys160 Рік тому +1

      @@Sa.m1498 yes

    • @pushkarmishra3386
      @pushkarmishra3386 Рік тому +1

      ok ? no one asked tho

    • @4bboys160
      @4bboys160 Рік тому +2

      @@pushkarmishra3386 no one say to you to comment here.

    • @ihave2enemies
      @ihave2enemies Рік тому +2

      Right next to him the guy on the second board Luke robataille
      4 time international maths olympiad gold medalist
      Also the winner of this years integration bee

  • @domesticd3signer339
    @domesticd3signer339 Рік тому

    How do i lesrn this if i only know a bit of pre calculus?

  • @cavinmuhammad4155
    @cavinmuhammad4155 Рік тому +2

    bruhhhh luke 👺👹

  • @Shunyasium
    @Shunyasium Рік тому +6

    When u are a JEE Advanced Aspirant🔥🔥🔥🔥🔥🔥🔥🔥

    • @Won49
      @Won49 Рік тому +5

      AIR 1 COULDNT GET SELECTED SOMETHING FALOR OVERFANSTSY COUNTRY WITH OVERHYPRD EXAM

    • @piyushsharma8442
      @piyushsharma8442 Рік тому

      ​@@Won49he reached finals you better think about yourself before putting a comment on a world class exam

    • @SATexamSlayer
      @SATexamSlayer Рік тому +7

      ​@@piyushsharma8442He did not reach finals ironic how literally all Indians on the comment section keep saying how easy it is yet their best could not solve it.If India is so great stay there stop coming to the US

  • @venkybabu8140
    @venkybabu8140 Рік тому +1

    You have money. No nu no petrol price don't try

  • @jannovak1287
    @jannovak1287 Рік тому

    OK and what is this good for?

  • @apz202
    @apz202 Рік тому

    got the second in about 3 mins

  • @matthewdolan4958
    @matthewdolan4958 Рік тому

    thisssuuhhh math is rather easy i coud do it in less than 5 second

  • @sniperlord7694
    @sniperlord7694 Рік тому

    Chirag up there

  • @snufflehound
    @snufflehound Рік тому

    Presenter talks way too much. Over 9 minutes before first integral is shown!

  • @tejaskolhe5094
    @tejaskolhe5094 Рік тому

    it is easy for an jee aspirants who solving reference books like cengage etc

    • @garvrajput9983
      @garvrajput9983 Рік тому +3

      yes thats why AIR 1 JEE-A 2020 didnt won. right?

    • @tejaskolhe5094
      @tejaskolhe5094 Рік тому +1

      @@garvrajput9983 the single student cant solve it not means that the level of question is easy although it can be solve by me also

    • @tirthankarsingh8776
      @tirthankarsingh8776 Рік тому

      ​@@garvrajput9983 They are easy question but the people solving them are god level students so I think yeah we can solve but surely not as fast as them

  • @abhisekkumaryadav2463
    @abhisekkumaryadav2463 25 днів тому

    Jee advanced aspirant? 😅

  • @zetrixcsgo
    @zetrixcsgo Рік тому +2

    CHIRAG FALOR IIT JEE 2014 ALL INDIA RANK 1🔥🔥