MIT integration bee qualifier test

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 433

  • @blackpenredpen
    @blackpenredpen  3 роки тому +88

    Hi all, here are some notes/formulas you might find helpful for this video: instagram.com/p/CSxZSlhBPbw/

    • @pardeepgarg2640
      @pardeepgarg2640 3 роки тому +2

      2hrs more :(

    • @aashsyed1277
      @aashsyed1277 3 роки тому

      Hiyah!

    • @thetruth7105
      @thetruth7105 3 роки тому

      Blackpenredpen what kind of math branches did you studied?

    • @Caadil6
      @Caadil6 3 роки тому

      Hi dear teacher I want to calculate this
      Sin4x in terms of sinx
      The answer will be 8cos³x.sinx -4sinxcosx
      But I'm confused how to prove that 😕
      Please help 🙏

    • @julioricardoaguilarsilva1576
      @julioricardoaguilarsilva1576 3 роки тому

      Why log=ln?.
      Thanks

  • @rohanmitra3900
    @rohanmitra3900 3 роки тому +443

    Great video! Infact my university held its first integration bee, and im glad to say i won! Did not expect it, but i used a lot of tricks that I saw on this channel before!

    • @blackpenredpen
      @blackpenredpen  3 роки тому +111

      Congrats! 🎊

    • @adios04
      @adios04 2 роки тому +4

      which uni do u go to

    • @scienceuser4014
      @scienceuser4014 Рік тому +2

      @@adios04 he goes to vermont state

    • @chomikhunter
      @chomikhunter Рік тому +9

      @@nikhilgond319 what makes you think that

    • @SayanGupta4
      @SayanGupta4 Рік тому +43

      ​@@nikhilgond319 Stop spreading hate and get a life

  • @skylardeslypere9909
    @skylardeslypere9909 3 роки тому +194

    I have an alternate (and faster) solution to Q7.
    We know cos²x-sin²x = cos(2x)
    Now we also know that sin(x)cos(x) = sin(2x)/2
    So we get the integral of 1/16 * sin(2x)^4 cos(2x)
    A simple u=sin(2x) will get the job done.

    • @enricofuochi2863
      @enricofuochi2863 3 роки тому +2

      That’s nice but I think you can’t write the answer in terms of 2x as the rules say the answer must be expressed in the original variable

    • @skylardeslypere9909
      @skylardeslypere9909 3 роки тому +11

      @@enricofuochi2863 I mean you just get (1/32)(1/5)sin(2x)^5 so if you now plug in sin2x=2sinxcosx again you have an expression in terms of your x

    • @mnek742
      @mnek742 3 роки тому +15

      @@skylardeslypere9909 @Enrico there is no problem with both versions of the antiderivative, with or without 2x the answers are equally acceptable as they are both in terms of x. If they said u^5/160 + C where u=sin(2x) that would be correct but not acceptable, but there's nothing wrong with 2x occurring in the answer

    • @aryanbakshi9876
      @aryanbakshi9876 3 роки тому +1

      Yup same method

    • @teslaaf5830
      @teslaaf5830 3 роки тому

      @DhruvK13 are u from india which university u in?

  • @diablo6250
    @diablo6250 2 роки тому +113

    I really like how you use terms like "U world" and "Complex world"
    I always find high level math magical, and this really adds to it

    • @ガアラ-h3h
      @ガアラ-h3h Рік тому +3

      This isn’t high level tho I mean I could solve all them and my friends probably can do and I’m in 10th grade and we’re not even from Asia it’s really basic tbh even the 1/(tan^pi x +1) can easily be done by king rule

    • @Marctf1
      @Marctf1 Рік тому

      @@ガアラ-h3hgood for you and your friend

    • @CanadaGoose-ks4eh
      @CanadaGoose-ks4eh Рік тому

      @@ガアラ-h3h You're just better then I guess

    • @artchicken1376
      @artchicken1376 Рік тому

      @@ガアラ-h3h ok....good for you. Some people enjoy this kind of stuff.

    • @Miftahul_786
      @Miftahul_786 Рік тому

      @@ガアラ-h3hshush bro boasting and downplaying other people’s knowledges makes you really dislikable

  • @thatkindcoder7510
    @thatkindcoder7510 3 роки тому +251

    I actually learnt quite a bit from this, thx for the video

  • @skylardeslypere9909
    @skylardeslypere9909 3 роки тому +67

    For the first integral, we don't need to worry about x being negative, but that doesn't exclude log(x) from being negative. So the solution should actually be log(2)log(|log(x)|)+log(x).

    • @benoist13
      @benoist13 3 роки тому +10

      Yes ! In France, if you don't put the absolute value into the ln function, then you don't get full mark !!

    • @mnek742
      @mnek742 3 роки тому +6

      You're right about the absolute value! Not sure but I think for the MIT Integration Bee the rules indicate that +C and absolute values for logarithms are not required only because it is understood that they belong in the solution.

    • @skylardeslypere9909
      @skylardeslypere9909 3 роки тому +1

      @@mnek742 Ah, that could definitely be the case. I'm not from the United States so I have no idea :) I'll take your word for it

    • @AviroMusic
      @AviroMusic Рік тому

      Absolutely

  • @sandglass9928
    @sandglass9928 3 роки тому +33

    For Q11: If you do Integration by parts at the first and then U substitution, that's it. When you do integration by parts it results: -arcsinx/2x² + 1/2 Integral(1/(x²√(1-x²))dx) and the integral can be written as Integral(x^-3[x^-2-1]^-½dx) and with u=x^-2-1 it's done. 😅

    • @flix7280
      @flix7280 3 роки тому +2

      First one was pretty simple,u substitution is faster than transforming it into an another integral

    • @forcelifeforce
      @forcelifeforce 3 роки тому +1

      You must mean to write grouping symbols around 2x^2 if it is in the denominator.

  • @jarkola9334
    @jarkola9334 3 роки тому +59

    for question 11 you can just use ' by parts ' directly by taking arcsin(x)/x as first function and 1/x^2 as second and it will simplify beautifully.

  • @TinyMaths
    @TinyMaths 3 роки тому +43

    Believe it or not, your 100 integrals in one video helped me figure out a lot more of the MIT Integration Bee (might have been 2005 or 2006) questions that I could have hoped to answer as I followed MIT's video.
    Your examples helped expose a lot of the holes in my knowledge which prepared me for the Bee (I and I can't wait to dig into this video.

    • @mohammadalkousa2856
      @mohammadalkousa2856 Рік тому

      Do you have questions of MIT Integration Bee from 2000 t0 2010? If you have, I will appreciate you!

    • @mohammadalkousa2856
      @mohammadalkousa2856 Рік тому

      Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023"
      You can simply find it!

  • @bastienhumbert255
    @bastienhumbert255 2 роки тому +8

    Hi! For the 6, we can write: f(x)=sqrt(xsqrt(xsqrt(x...) equivalent to: f(x)=sqrt(x × f(x)) equivalent to: (f(x))^2= xf(x) equivalent to f(x)=x and integrate x

  • @aryirfan2427
    @aryirfan2427 3 роки тому +25

    Sir, you look like you are gradually progressing into becoming the sensei of mathematics!

  • @peterburbery2341
    @peterburbery2341 3 роки тому +30

    I really like practicing integration skills! I would like to see another video on another year's integration bee.

  • @hassanniaz7583
    @hassanniaz7583 3 роки тому +2

    I did Q2 like this:
    Let, u= e^x + 1
    => du=e^x dx
    => dx= du/(u-1)
    Integral becomes
    ∫ du/(u*(u-1)) from 2 to infinity
    By partial fractions we get,
    -ln(u) + ln (u-1) from 2 to infinity
    =ln ((u-1)/u)
    =ln (1-1/u)
    By putting limits we get
    =ln (1-0) - ln (1-0.5)
    =0-ln (2^-1)
    =ln(2)

  • @stratonikisporcia8630
    @stratonikisporcia8630 Рік тому +3

    I don't know what he's doing but I know he's doing it hella good

  • @adityak1231
    @adityak1231 3 роки тому +7

    For question 13, using King's rule is better: ∫f(x)dx (a->b) = ∫f(a+b-x)dx (a->b).
    I = ∫sin(sinx - x)dx
    I = ∫sin(sinx + x)dx
    2I = ∫2sin(sinx)cos(x)dx sinx = t
    2I = -2cos(sinx) (0 -> 2π)
    I = 0
    Even for question 15, using King's rule and adding the integrals gives
    2I = ∫dx (0->π/2)
    I = π/4
    The tanx part just cancels out.

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 2 роки тому

      I did 13 with the king property too. Given the cyclical nature of sin, and the fact that every x was in sin, I didn't even put in the 2πs. I just had the integral of sin(sin(x)-x) = integral of sin(x-sin(x)) and since sin is odd, then I=-I if and only if I=0.

  • @jonathanhanon9372
    @jonathanhanon9372 2 роки тому

    For 11, I did u csc^2(u) cot(u) du
    IBP:
    u = u
    dv = csc^2(u) cot(u) du
    v = -1/2 csc^2(u)
    Integrating u dv = -1/2 csc^2(u) * u + 1/2 integral csc^2(u) du
    = -1/2 (u csc^2(u) - cot u)

  • @alberteinstein3612
    @alberteinstein3612 3 роки тому +35

    10:15 if you were to put 1 into that ln argument, you would get ln 0, which is negative infinity. You need to manipulate and then do L’Hôpital’s Rule. Luckily, it would still work out to 0 :)

    • @sadececansu9
      @sadececansu9 5 місяців тому

      Hello, This is where I confused. Could you please give further explanation? The way he solved was wrong? How should we do L'H? Thanks in advance......

    • @alberteinstein3612
      @alberteinstein3612 5 місяців тому

      @@sadececansu9after he solved the integral, he still had to plug in the upper and lower bounds. I noted that he needed to use log laws and then L’Hôpital’s Rule to actually evaluate these logarithms at x=1, since technically these are the limits as x approaches 1. Hope that helps

    • @alberteinstein3612
      @alberteinstein3612 5 місяців тому

      @@sadececansu9L’Hôpital’s Rule is used when a limit, via direct substitution, yields either 0/0, inf/inf, or -inf/-inf. It’s when you take the derivative of both the numerator and denominator of the limit and then reevaluate. The limits will approach the same value

    • @sadececansu9
      @sadececansu9 5 місяців тому

      @@alberteinstein3612 Thank you for your respond :) I have another question could you please explain it as well
      For question 3 how could the teacher find u*lnu because he led u=lnx isn't logx equal to lnx/ln10 ? I said u=logx so lnx=ln10*du
      then the new interval became 1/ln10 to e/ln10
      And for the question 8 how it became ln(x^2+1) but not ln(x^2+1)/ln10 Thank you....

    • @alberteinstein3612
      @alberteinstein3612 5 місяців тому

      @@sadececansu9 always set u=ln x. The derivative is tens of times easier than log x. Substitute ln for log whenever you can

  • @mokouf3
    @mokouf3 3 роки тому +2

    First question:
    Even if those log are of unknown base (but must be same, since they are both written as log),
    result is still the same. log(a) / log(b) = log_b(a).
    So we can divide both logs by log(e), making them both becoming ln.

  • @Priyanshu-q7s
    @Priyanshu-q7s 7 місяців тому

    the last question can easily be solved by using gama function because if we just substitute x^4 to y and the do some simple algebra involving calc then we will get integration_0 tp inf_0.25{y^(1/2)e^(-y)}dy which is in gama form. 1/4{gama(1 + 1/2)} = 1/4 * 1/2 * gama(1/2) = 1/4 * pi^(1/2)/2 = pi^(1/2)/8

  • @migabok.evariste1359
    @migabok.evariste1359 3 роки тому +2

    On question 7 you can also use the indentity sin^4(x)•cos^4(x)= 1/16 sin^4(2x)
    Then the integral becomes
    1/16$ (sin2x)^4 • cos(2x) from here you can make a u-sub. Put u=sin(2x). And finish it off.
    😄😆✌👍

  • @jimmykitty
    @jimmykitty 3 роки тому +26

    I'm writing eagerly for the Premier ❤

    • @aashsyed1277
      @aashsyed1277 3 роки тому

      Me too

    • @jimmykitty
      @jimmykitty 3 роки тому

      @@aashsyed1277 Wow!! How r u? 🥰

    • @aashsyed1277
      @aashsyed1277 3 роки тому

      @@jimmykitty :) fine

    • @jimmykitty
      @jimmykitty 3 роки тому

      @@aashsyed1277 Glad to hear, kid! 🥰😍❤

    • @jimmykitty
      @jimmykitty 3 роки тому

      @Corwin Crooks What's this? 🙌

  • @dummydummy5268
    @dummydummy5268 3 роки тому +2

    Thank you so much sir, the Di method changed my life

  • @holyshit922
    @holyshit922 3 роки тому +4

    7 Maybe double angle would be better
    1/16 Int(sin^4(2x)cos(2x)dx) and simple u substitution u = sin(2x)
    11 I would calculate it by parts
    In first integration by parts I would get rid of arcsinx
    then I would rewrite integral
    Int(1/(x^2sqrt(1-x^2))dx) as sum of integrals Int(sqrt(1-x^2)/x^2,dx)+Int(1/sqrt(1-x^2),dx)
    and integral Int(sqrt(1-x^2)/x^2,dx) again by parts
    13. Substitution u = Pi-x and we will get integral of odd function on interval symmetric arount zero
    14 If we want to get rid of summation symbol we can use formula fo sum of finite geometric sequence
    20. For this rat race this one is quite quick with Gamma function 1/4*Γ(3/2)

  • @sayantanmazumdar9371
    @sayantanmazumdar9371 2 роки тому +1

    in the first question u can also do IBP with v=1/x and u=log(2x) /log(x)

  • @nischalpandey201
    @nischalpandey201 3 роки тому +13

    Idk why the students (viewers) ain't know about bprp or wtf is the reason why his subscribe is just 750k instead he deserves 2M+......

  • @sherlockjunior8612
    @sherlockjunior8612 3 роки тому +2

    In Q11, what if we directly apply integration by parts,
    We get:
    (1/2x²)arcsinx +(1/2) ∫ x⁻²dx/√(1-x²)
    Here, we have to just calculate the integral:
    ∫ x⁻²dx/√(1-x²)
    If we take x² common from the square root in the denominator, we get:
    ∫ [x⁻²/x√(x⁻²+1)] dx
    --> ∫ [x⁻³/√(x⁻²+1)] dx
    Here if we do U substitution of x⁻²+1=t, we get a direct integral of (-1/2)∫dt/√t
    I think this is a much faster way than first substitution of x=sin(u) and then applyind DI method! Thanks 😇✌🏻

  • @randompersonasdf
    @randompersonasdf Рік тому

    for 13) you could also use the substitution u = 2pi - x and you will find I = -I so 2I = 0, I = 0

  • @KATTAR_HINDU_AKANDBHARAT
    @KATTAR_HINDU_AKANDBHARAT Рік тому +1

    14:15 here if you multiply divide by 16 it will be integral of sin⁴2xcos2x now put sin2x =u then integrate
    Way easier

  • @humhum3987
    @humhum3987 9 місяців тому

    For 7, we could just develop (cosx+sinx)(cosx-sinx) into cos2x, and sin^4xcos^4x into 1/16*sin^4(2x), then we do u sub : theta = 2x, we have to inetgrate sin^4(theta)cos(theta)/32 which is sin^5(theta)/160 than we develop theta into 2x and we get the answer : sin^5(x)cos^5(x)/5 + C

  • @space1607
    @space1607 3 роки тому +9

    This is actually very helpful, I’m a sophomore taking ap calc right now and this video will definitely help me with the class, thanks!

  • @justinpark939
    @justinpark939 3 роки тому

    Q11: When we do integration by parts, let u = arcsin and dv = x^-3
    Then, we get the UV, which if we evaluate, get 0.
    The integral part is 1/x^2sqrt(1-x^2) times 1/2 (which I factored out). If we let x=sin(theta), then dx=dthetacos(theta), which the cos term cancels with the radical term (by pythag identity). Therefore, we get 1/sin^2(x) which is csc^2(x). The antiderivative of csc squared is -cot and pluging in the limits yields -1. therefore, the answer overall is a half. Also, if I had known the antiderivative of that integrand to be an arccot, I probably would have been more sure and not substitute out of blind faith.

  • @Train_Sounds
    @Train_Sounds 3 роки тому

    I think this round microphone ball and him are glued together.

  • @ガアラ-h3h
    @ガアラ-h3h Рік тому

    Q20) use u = x^4 then see it’s gamma function

  • @al3diumgd310
    @al3diumgd310 3 роки тому +3

    I have a faster solution to Q11:
    Not going to write it down but essentially integrate by parts, u=arcsin x and dv=x^(-3) it converts to an integral with only powers of x's and it is more handable

    • @unkennyvalley287
      @unkennyvalley287 3 роки тому

      wont that give an 1/(x^2 sqrt(1-x^2))? seems troublesome to integrate tbh

    • @AquaticDot
      @AquaticDot 3 роки тому

      @@unkennyvalley287 It does, but it only takes a simple trig substitution; taking x=sin(u) gives an integral of cos(u)/(sin^2(u)×cos(u)) or the integral of csc^2(u). This is -cot(u) which yields the desired result.

  • @slavinojunepri7648
    @slavinojunepri7648 Рік тому

    MIT integration bee is an interesting competition. Thanks for these sample exercises as they demonstrate how well candidates must be prepared.

  • @jaja47_coolness
    @jaja47_coolness 8 місяців тому +1

    Dang, good to know they see the common log format as the natural log format :/

  • @TheMichaelmorad
    @TheMichaelmorad Рік тому

    Q7 can be solved by. noticing that the expression under the integral cam be written as 1/16*(sin(2x))^4cos(2x) and then you have an easy u substitution

  • @DaveyJonesLocka
    @DaveyJonesLocka 3 роки тому +3

    In 4, am I the only one who wondered why he glossed over the fact that (1-x)ln(1-x) is indeterminate as x approaches 1 from the left? I mean, that limit is zero, and hence saying it’s zero just because 1-x is zero is technically correct, but disregards the improperness of the integral.

    • @arthurkangdani2414
      @arthurkangdani2414 8 днів тому

      Yeah this one is also got on my head because the ln(1-x) one, because if you see the graph, this function is obviously discontinuity at x=1 which makes the logarithms undefined by ln(0) so I still don't understand how it becomes 0. Can anyone share how?

  • @aashsyed1277
    @aashsyed1277 3 роки тому +10

    Sir thanks for inspiring me to make me create a channel......my first video will probably be uploaded on the end of 2021 .......sir thanks a ton!!!!!!!!
    And once this premiere starts you will be helping me a lot por more than before....MIT integration bee is hard.....
    But i think you will make it ez........
    Thanks for your past videos a ton!!!!!!
    You deserve 10 million subscribers!!!

    • @jimmykitty
      @jimmykitty 3 роки тому +1

      Comment your name on my UA-cam channel right now 😁 okay?

    • @aashsyed1277
      @aashsyed1277 3 роки тому +1

      @@jimmykitty no comments on your channel

    • @jimmykitty
      @jimmykitty 3 роки тому

      @@aashsyed1277 Comment your name in this video : ua-cam.com/video/-BJ1Z5jWgpc/v-deo.html

    • @aashsyed1277
      @aashsyed1277 3 роки тому +1

      @@jimmykitty oh dear.........
      no people still might see comments...i will tell u one day...

    • @jimmykitty
      @jimmykitty 3 роки тому

      @@aashsyed1277 Click on this link : ua-cam.com/video/-BJ1Z5jWgpc/v-deo.html
      And then drop your name by commenting right now...

  • @haithambnyslameh2865
    @haithambnyslameh2865 3 роки тому +2

    Q7
    Use
    (sin(2x)/2)^4=(sinx cosx)^4=
    sin^4x cos^4x
    That's will be easier

    • @holyshit922
      @holyshit922 3 роки тому

      I also would calculate in that way

  • @justinpark939
    @justinpark939 3 роки тому +1

    I solved quite a few of these but there is no way I can do 1 per minute. The guys who even do the qualifier are amazing!

  • @mmpcc4270
    @mmpcc4270 18 днів тому

    in the 3rd integral you forgot the factor 2 but all the love one of the smartest on the internet

  • @jVt1306..
    @jVt1306.. 2 місяці тому

    Yeah, you could just split arc sinx and 1/x³ seperately then apply by parts . Would be easy from all these different substitutions . 😊

  • @akbaer60
    @akbaer60 Рік тому +2

    2:40 It should've been ln(2)ln|ln(x)|+ln(x)+C, because the integral of 1/x dx is ln|x| +c not ln(x)+c

  • @fundraiser1907
    @fundraiser1907 10 місяців тому

    Q7 Cn solved way faster
    here's how you do it
    multiply and divide by 16 and the integral reduces to (sin2x)^4 cos(2x)dx
    substitute sin2x=u and you will end up with 1/32 integral u^4 du
    the resulting ans is same as the one mentioned in the video

  • @Happy_Abe
    @Happy_Abe 3 роки тому +12

    Took an integration bee in 2019 in Brooklyn College and won a round
    It was much easier and I was just learning Calc 2 then and I managed to win a Pi day shirt
    We have the bee on pi day lol

  • @ChaoticNeutral6
    @ChaoticNeutral6 3 роки тому +20

    I don't think question 7 was there just to try and slow you down, it looked like a test of trigonometric identities to me. You could have done it faster by using the double angle identities to simplify the expression to (1/16)*sin^4(2t)*cos(2t) and then just use the fact that sin^n(x)cos(x) integrates to sin^(n+1)(x)/(n+1)

  • @balakumarank2006
    @balakumarank2006 2 роки тому +1

    The 6th one can be done by substituting w = the given function , then we automatically have w^2 = x.w then x = w then by integrating we have x^2 /2 + c

  • @mathevengers1131
    @mathevengers1131 3 роки тому +2

    3:48 that bring back memories of you with Dr. πm.

  • @youngmathematician9154
    @youngmathematician9154 3 роки тому +1

    Here is a way to solve Q13 analytically (∫(0 to 2π)(sin(sin(x)-x)dx) :
    Let u=x-π=>x=u+π=>dx=du. Our integral will then become ∫(-π to π)(sin(sin(u+π)-(u+π)))du.
    By the angle addition identities, sin(u+π)=sin(u)cos(π)+cos(u)sin(π)=-sin(u).
    Therefore, our integral is equal to ∫(-π to π)(sin(π-u-sin(u)))du= ∫(-π to π)(sin(π-(u+sin(u))))du.
    By the angle addition identities, sin(π-u)=sin(π)cos(u)-cos(π)sin(u)=sin(u).
    Our integral is now equal to ∫(-π to π)(sin(u+sin(u)))du.
    Let f(x)=sin(x+sin(x)). Observe that f(-x)=sin(-x+sin(-x))=sin(-x-sin(x))=-sin(x+sin(x)). This means f(x) is odd.
    Therefore, the integral we desire will be equal to 0.

  • @EduardoViruenaSilva
    @EduardoViruenaSilva 3 роки тому +1

    Integral 13 can be justified by integrating from 0 to pi and then from pi to 2pi.
    In the second integral a change of variable can be made: u=2pi-x.
    Now, by using sin(a-b)= sin(a)cos(b) - cos(a)sin(b) the second integral can be reduced to the negative of the first one.

  • @kamalsaleh6497
    @kamalsaleh6497 2 роки тому

    For Q6 you could just set f(x) to sqrt(xf(x)) because of the infinite product. Solving you get x

  • @brendanfay5140
    @brendanfay5140 2 роки тому

    14:43 you can just use double angle identities and do this way faster
    amazing videos btw I love this stuff

  • @saivivekpeta1696
    @saivivekpeta1696 2 роки тому

    The 13th one will be done by taking x as a+b-x and subsituting, we will directly get zero

  • @TheRageEagle
    @TheRageEagle 3 роки тому +18

    I managed to do like 14 of them by myself but definitely not in the time limit hahaha

    • @hassanniaz7583
      @hassanniaz7583 3 роки тому

      Same. I did 15. Couldn't do Q9, 11, 13, 14 and 20 on my own.

    • @larsb.1972
      @larsb.1972 3 роки тому

      @@hassanniaz7583 no one asked

    • @hassanniaz7583
      @hassanniaz7583 3 роки тому +18

      @@larsb.1972 No one told you.

    • @4fgaming925
      @4fgaming925 3 місяці тому

      lol bro salty

  • @waltermartinez555
    @waltermartinez555 Рік тому

    Fun fact: in the integral Q10 the answer could be: (1/2)*ln((2^n)*(x^2)+(2^n)x+(2^(n-1))) with n being a real number, if you don't believe me, try to derive it

  • @amitarajesh583
    @amitarajesh583 2 роки тому

    for ques 6 let y=sqrtx sqrtx sqrt (x) .....
    y=sqrt(xy) hence y^2 = xy and considering y will not be constant y = x so integral(x) = x^2/2 + c

  • @TheCrashtestCZ
    @TheCrashtestCZ 3 роки тому +1

    Amazing video, I really can't stress enough how much I enjoy these!

  • @ChuiKing
    @ChuiKing Рік тому +1

    14:08 question 7
    i think it would be easier if we do:
      sin4 x *cos4 x *(cos2 x -sin2 x) dx
      = (sinx *cosx)^4 *(2 *cos2 x -1) dx   [ sin2 x + cos2 x = 1 >> sin2 x = 1 -cos2 x ], [ cos2 x -sin2 x >> cos2 x -1 +cos2 x >> 2 *cos2 x -1 ]
      = (sin(2x) /2)^4 *(2 *cos2 x -1) dx   [ sin 2x = 2*sinx*cosx >> (sin 2x)/2 = sinx*cosx ]
      = sin4(2x)/16 *(cos 2x) dx   [ 2 *cos2 x = cos 2x +1 >> 2 *cos2 x -1= cos2x ]
    u = sin 2x
    du = 1/2 *cos 2x dx
      sin4(2x)/16 *(cos 2x) dx
      = 1/16 *u^4 *cos(2x) *2 *1/cos(2x) du
      = 1/8 *u^4 du
     => 1/8 *1/5 *u^5
     => 1/40 *sin5 x +C //

  • @unkennyvalley287
    @unkennyvalley287 3 роки тому

    for 13, i realised that using the King property of integration works: int f(x) from x=a to x=b is the same as int f(a+b-x) from x=a to x=b.

  • @simran1-08
    @simran1-08 Рік тому

    Q8, you have to divide by ln10

  • @giggitygiggitee1956
    @giggitygiggitee1956 7 місяців тому

    29:55 can be further simplified as (sqrt 8)sin (1+0.25pi) - 2 using sin x + cos x = (sqrt 2) sin (x+0.25 pi)

  • @kingarth0r
    @kingarth0r 2 роки тому +1

    I may try the MIT integration bee someday

  • @fivestar5855
    @fivestar5855 3 роки тому +1

    When Gaussian Integral appeared you've sparkled with happiness)

  • @donaldlogan5310
    @donaldlogan5310 3 роки тому +3

    As someone who has 0 idea what is going on this is very fascinating and confusing lol

  • @ammardian
    @ammardian 3 роки тому +1

    I have a faster solution for question 4, a very unknown formula can make it quicker. arctanh = ln((1+x)/(1-x))/2. This means that you can simply find its integral which is 1/(1-x^2), and hence calculate the solution much quicker.

    • @chaitanyakatti463
      @chaitanyakatti463 3 роки тому

      The integral of arctanh as you mentioned it wrong, and its actual correct formula is quite hard to remember.

    • @ammardian
      @ammardian 3 роки тому

      ​@@chaitanyakatti463 Yep I got it wrong and in the end is quite hard to remember

  • @Ahmad-Saad-
    @Ahmad-Saad- 2 роки тому

    Frist problem could be like that
    Integratin{(1/x)(log(2x-x)}dx = int{(1/x)(logx)}dx
    = (1/log |e|)(log|x|) + c

  • @hassanniaz7583
    @hassanniaz7583 3 роки тому +1

    So I did Q6 in a very unusual way like this:
    Let, u=sqrt(x*sqrt(x*sqrt(x....)))
    =>u^2=x * sqrt(x*sqrt(x*sqrt(x....)))
    =>u^2=x*u
    =>u=x
    So, du=dx
    The integral becomes,
    ∫ u du
    =u²/2+c
    Since u=x
    =x²/2+c
    But is my method correct? Comment if anyone finds a mistake.

    • @Zephei
      @Zephei 2 роки тому +1

      This is also what I did. To fully justify this method you would technically also have to show that u converges for x>0.

  • @akolangto8225
    @akolangto8225 3 роки тому

    The best calculus teacher!!!
    From the philippines

  • @ガアラ-h3h
    @ガアラ-h3h Рік тому

    I’ll explain how to do the 1/(tan^n +1) => int cos^n/(sin^n + cos^n) now use kings rule for the boundaries and you get I = sin^n/cos^n + sin^n add them up 2i = int 1

  • @nicholasjohnson3542
    @nicholasjohnson3542 3 роки тому +1

    Thumbnail question is at 21:17

  • @kavyanshtyagi2563
    @kavyanshtyagi2563 3 роки тому +4

    i am preparing for jee advanced in india and these questions look very much similar . thnx i did my revision

  • @forgive_me_for_being_unfunny
    @forgive_me_for_being_unfunny Рік тому +1

    The Shirt u are wearing help me really in my exam :)

  • @uberless1
    @uberless1 3 роки тому +1

    44:50
    That 0-0 looks like he's seen some stuff...

  • @hydra_brothers_gaming7881
    @hydra_brothers_gaming7881 Рік тому

    I think in q7 we could've used cos(2x)*sin^4(2x)/16 and then taken u=sin(2x)

  • @plislegalineu3005
    @plislegalineu3005 2 роки тому

    18:50 i'd factor the x² from the denominator

  • @russellkane9439
    @russellkane9439 Рік тому

    Great mr blackpen... many thanks... please MORE bees integrals!!!!!
    PS... you know what? when you say "product rule" the automatic translator says "PRADA rule" ahahaha

    • @mohammadalkousa2856
      @mohammadalkousa2856 Рік тому

      Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023"
      You can simply find it!

  • @fartoxedm5638
    @fartoxedm5638 Рік тому

    Q7 - u = cosx - sinx => integral((u^2 - 1)^4/2^4 * u du)

  • @holyshit922
    @holyshit922 3 роки тому +1

    These integrals would not be so difficult to calculate without time limit

  • @pranjalsingh8017
    @pranjalsingh8017 3 роки тому +2

    Too hard to resist!!

  • @vardaan0219
    @vardaan0219 2 роки тому +1

    For ques 7 we can actually covert them into higher angle = 1/4 [sin4x cos2x ] and use some trigonometry you write it as 1/8[ sin 6x + sin 2x ]

  • @AayushSrivastava0307
    @AayushSrivastava0307 Рік тому

    was able to get 18/20 correct in 20 mins, im studying for JEE Adv and this was decent practice , wasnt able to think about Q9 and Q13 in time.

  • @wacky6581
    @wacky6581 3 роки тому +6

    I just finished Algebra 2 sophomore year and I am traumatized by these questions

    • @barrydylan-rs8vf
      @barrydylan-rs8vf 6 місяців тому

      That’s mega valid. If you’ve never integrated, I get how ya feel. You’re most likely graduated so hope you are well!

  • @CaoNiMaBi
    @CaoNiMaBi 3 роки тому +1

    Finally, something I can follow.

  • @Someone-cv4bm
    @Someone-cv4bm 2 роки тому +1

    Thanks
    For Q20
    If we use gamma function we will get it in a simple way

    • @sagnikdebsarkar169
      @sagnikdebsarkar169 Рік тому +1

      What is Gamma function?

    • @sagnikdebsarkar169
      @sagnikdebsarkar169 Рік тому

      I mean he could have just substituted x with sin x or cos x, and of course by changing the limits accordingly

  • @nocturnalvisionmusic
    @nocturnalvisionmusic 2 місяці тому

    What are the chances I revisit this video the day before its third anniversary (8/20/24) - that's absolutely crazy 😧🥳🥰

  • @themanofiron785
    @themanofiron785 3 роки тому +5

    2:19 just because x is positive doesn't mean that ln(x) is positive, so ln(ln(x)) is not defined for all positive values of x (in the real world, of course).

    • @blackpenredpen
      @blackpenredpen  3 роки тому +5

      they didn’t have abs values on the answer key and I was trying to figure out why 😆

  • @imabstrong
    @imabstrong 2 роки тому +1

    For 13 I just did change of var x --> x-π and the fact that sin(x+pi)=-sin(x) to get ∫sin(sinx + x)dx from -π to π. The integrand is odd, so the ans is 0.

  • @Derferder-yt
    @Derferder-yt 3 роки тому +1

    Why is this in my recommendations... I haven't even done calculus yet

  • @armanavagyan1876
    @armanavagyan1876 Рік тому

    More MIT integration bee please)

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +13

    45:26

    • @TreeCube
      @TreeCube 3 роки тому

      "And, this is it!"

    • @ByakuyaKuchiki006
      @ByakuyaKuchiki006 3 роки тому +1

      Can you prove the the formula he used to solve question 9?

  • @teslaaf5830
    @teslaaf5830 3 роки тому +6

    I was able to solve 17 of them but definetely not in 20 mins it took me around 33 mins but the questions are quite easy compared to the mighty jee advanced integrals

  • @MathTutor1
    @MathTutor1 3 роки тому +3

    Great work.

  • @kumarashutosh8937
    @kumarashutosh8937 Рік тому

    in the last question i applied gamma function and got sqrt (pi) / 8

  • @calebmcgill2279
    @calebmcgill2279 3 роки тому

    Yeah I’ll solve your integral. *pulls up matlab

  • @theredshadow6696
    @theredshadow6696 18 днів тому

    For the first question i thought it was log base 10 so i used a calculator and it took me sooo much time😭

  • @ashwinrai6783
    @ashwinrai6783 3 роки тому +1

    Solve JEE Advance`s Integration

  • @154bharshbhanushali9
    @154bharshbhanushali9 3 роки тому +1

    Hello I am new to your channel .
    I liked your videos ,
    I have another method for question 7 ,
    We can use double angle formulaes of cos 2x and sin2x then substitute sin2x = t ; then 2cos2x dx = dt ; and then we can easily solve further .....
    By the way, I am from India and
    I have a fun fact ,
    {In india , our teachers tells us to learn approximately 500 formulaes in Trigonometry only . }

    • @erenjaeger309
      @erenjaeger309 3 роки тому

      500 trignometry formulas??? konsi trigno pdra bhai

    • @154bharshbhanushali9
      @154bharshbhanushali9 3 роки тому

      @@erenjaeger309 Bhai kabhi kundan sir of Physics wallah k lecture dekho
      Pata chal jaiga
      Aur bhai joh renowned teachers hain voh questions ko bhi formula banakar yaad karne ko bolte hain
      Isliye maine toh kiya hai 500 formulaes yaad

    • @erenjaeger309
      @erenjaeger309 3 роки тому

      @@154bharshbhanushali9 ok understood

  • @jeffreyluciana8711
    @jeffreyluciana8711 3 роки тому

    Wow, you're big time now.

  • @nischalpandey201
    @nischalpandey201 Рік тому

    qns no. 17 i have been doing subs thrice and finally got the answer but was quite easy