2024 MIT Integration Bee - Regular Season

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 22

  • @maxz8807
    @maxz8807 9 місяців тому +33

    Well done to all math wizards here - I wouldn't even know where to begin on most of these haha. I'm still stumped by the integral with the floor of the floor of x - would love to see an explanation to the solution of that one

    • @BPEREZRobertJamesL
      @BPEREZRobertJamesL 2 місяці тому +4

      Let I be our integral.
      We can write every real number x as k + t for some integer k and some real 0 < t < 1. Then, we may change our integration into a summation w.r.t. k of integrals w.r.t. t. This gives us the following expression:
      Sum_(k=1)^9 (Int_0^1 (Floor(k(k+t) dt)
      We start from k = 1 because for any x such that k = 0, the corresponding integral is zero.
      Therefore:
      I = Sum_(k=1)^9 (Int_0^1 (Floor(k^2 + kt) dt)
      Since k^2 is an integer, we can separate Floor(k^2 + kt) into k^2 + Floor(kt). Thus:
      I = Sum_(k=1)^9 (Int_0^1 (k^2 + Floor(kt)) dt)
      By linearity of integration, we have:
      = Sum_(k=1)^9 (k^2 Int_0^1 (1 dt) + Int_0^1 (Floor(kt) dt))
      = Sum_(k=1)^9 (k^2 + Int_0^1 (Floor(kt) dt))
      Now, Floor(kt) depends on t, which ranges from 0 to 1. Note that the interval [0, 1]
      may be decomposed into a union of k disjoint intervals:
      (0,1) = [0, 1/k) ∪ [1/k, 2/k) ∪ [2/k, 3/k) ∪ ... ∪ [(k-1)/k, 1)
      We can ignore [0, 1/k) because in that interval, the floor is zero, and therefore, so does the integrand.
      Thus, we may substitute Floor(kt) = m for some integer 0 < m < k and write the remaining integral as a summation from m = 1 to k-1 of Floor(kt) times the width of each subinterval in the decomposition above, which is 1/k:
      = Sum_(k=1)^9 (k^2 + Sum_(m=1)^(k-1) (m/k))
      = Sum_(k=1)^9 (k^2 + 1/k Sum_(m=1)^(k-1) (m))
      By the linearity of summation, we have:
      = Sum_(k=1)^9 (k^2) + Sum_(k=1)^9 (1/k Sum_(m=1)^(k-1) (m))
      Note that the sum of the first n integers is n(n+1)/2, and the sum of the first n integer squares is n(n+1)(2n+1)/6. You may prove this via induction, via telescoping series, or whatever method you come up with. Using these two theorems, we should get:
      = 9(9 + 1)(18 + 1)/6 + Sum_(k=1)^9 (1/k k(k - 1)/2)
      = 15*19 + Sum_(k=1)^9 ((k - 1)/2)
      = 15*19 + 1/2 Sum_(k=1)^9 (k - 1) (distributive property)
      Now, note that summing the first 9 (k-1)'s (starting from k=1) is the same as summing the first 8 k's. Thus:
      = 15*19 + 1/2 Sum_(k=1)^8 (k)
      = 15*19 + 1/2 8(8+1)/2
      = 15*19 + 2*9
      = 15*19 + 18
      = 15*19 + 15 + 3
      = 15*(19 + 1) + 3
      = 15*20 + 3
      = 300 + 3
      = 303
      Hope this helps.

  • @BryanDing3000
    @BryanDing3000 5 місяців тому +7

    I'm surprised Problem 16 stumped so many people. A simple integration by parts would've led to the correct answer.

  • @elmaminsk5411
    @elmaminsk5411 9 місяців тому +6

    22:23 - You can see the critical mistake on the board: substitution to 1-x exchanges integration limits, so we shouldn't add minus sign at the beginning of the integral

    • @sca4723
      @sca4723 3 місяці тому

      i got (1/2025) - (1/1013) + (1/2027) it is right?

  • @CallMeMak.
    @CallMeMak. 2 місяці тому +1

    Feels good to be Able to solve some of them, especially with the time limit! Hope that one day I might be able to do it alongside of them :)

  • @ayushtripathi2605
    @ayushtripathi2605 7 місяців тому +2

    Second problem can also be solve by taking x to the power. 4047 from denominator

  • @Defaulter_4
    @Defaulter_4 Місяць тому +1

    33:38 this guy's smile made my day. So happy to see him :D

  • @Zach27182
    @Zach27182 9 місяців тому +14

    Next time would it be possible to keep the integral on the screen while showing the contestants solving them?

  • @maxz8807
    @maxz8807 9 місяців тому +12

    Appreciate the subtitles :D

    • @maxz8807
      @maxz8807 9 місяців тому +5

      Also appreciate the man with the purple bucket hat writing his method in the first round!
      I'm not a math genius, but I do like watching these, and I could actually understand what was happening :)

    • @maxz8807
      @maxz8807 9 місяців тому +4

      Sorry perple bucket hat man, I don't know your name 🥲

  • @mrlove3010
    @mrlove3010 6 місяців тому +7

    Chirag falor jee advanced air1 2020❤

  • @edwardhuang5885
    @edwardhuang5885 9 місяців тому +7

    dang that's luke from mathcounts 2018 he was famous in that vid

  • @onichan8557
    @onichan8557 8 місяців тому +1

    1:11:03 board 1 is incorrect , the denominator of last 2 terms , they should be whole square and whole cube respectively , but the he wrote 2 cube and 2 square which is obviously different

    • @antontrygubO_o
      @antontrygubO_o 7 місяців тому +1

      I don't understand. Answer is same as correct...

  • @tvvt005
    @tvvt005 3 місяці тому +2

    Wait how did they graph this function? Can someone explain? 13:05

    • @nakulcodes
      @nakulcodes 2 місяці тому

      ahh so as its in log to the base 43 so from 1 till 43 the function gonna give a value of 0, from 43 to 43 squared its gonna be 2 and so on.

  • @Alboa97
    @Alboa97 День тому

    Asian guys are smarter and hard working

  • @someguy1428
    @someguy1428 9 місяців тому

    This is fun

  • @PriyanshuAman-dn5jx
    @PriyanshuAman-dn5jx 8 місяців тому +2

    Most are chinese and indians
    And the indian scored the highest❤