An exponentially fascinating integral

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 32

  • @orionspur
    @orionspur День тому +28

    Your rapper name is M.C. Gamma.

  • @zunaidparker
    @zunaidparker День тому +6

    Another cracking case! Happy new year man! All the best for 2025!

  • @CM63_France
    @CM63_France День тому +10

    Hi,
    "ok, cool" : 0:16 , 1:15 , 3:34 , 7:55 ,
    "terribly sorry about that" : 6:19 , 7:45 .

  • @OdedSpectralDrori
    @OdedSpectralDrori День тому +5

    6:35 it should be gamma prime of one I believe...

  • @lol1991
    @lol1991 14 годин тому +1

    0:20 What is that dead whistle?

  • @MrWael1970
    @MrWael1970 14 годин тому

    Thank you for your effort.

  • @zubii2017
    @zubii2017 День тому +4

    Just two "terribly sorry about that* today :(

    • @maths_505
      @maths_505  День тому +5

      @@zubii2017 terribly sorry about that

    • @owenvaughn3191
      @owenvaughn3191 День тому +2

      @@maths_505I could see your reply coming from a mile away

    • @maths_505
      @maths_505  День тому +1

      @owenvaughn3191 🤣🤣🤣

  • @dharunpranay8581
    @dharunpranay8581 День тому +3

    This integral is already solved by Maths 505 before one year 😂😂

  • @krisbrandenberger544
    @krisbrandenberger544 12 годин тому

    @ 6:19 Should be Gamma(1), not Gamma(2).

  • @beuhs545
    @beuhs545 День тому +1

    isn’t the sum at 7:15 supposed to be negative?

    • @Samir-zb3xk
      @Samir-zb3xk День тому

      the negative cancelled after differentiation

  • @assemakkak2592
    @assemakkak2592 День тому

    Nice video , can you solve this question please : sum from 0 to n-1 of 2^k (3^(2^k)-1)/(3^(2^k)+1) .

    • @dmk_5736
      @dmk_5736 День тому

      answer from llm qwq32b is:
      let i=k; i₃=3^(2^i); => sum termᵢ=2ⁱ(i₃+1-2)/(i₃+1)=2ⁱ-(2ⁱ⁺¹)/(i₃+1)
      split into two sums: first one is geometric series,
      second 2ⁱ⁺¹/(i₃+1) = aᵢ-aᵢ₊₁, where aᵢ= 2ⁱ⁺¹/(i₃-1)
      __ 2ⁱ⁺¹(1/(i₃-1) - 2/(i₃*i₃ - 1)) = 2ⁱ⁺¹(i₃+1-2)/((i₃+1)*(i₃-1)) = 2ⁱ⁺¹/(i₃+1)
      so sum telescopes leaving only a₀-a_n = 1-2^(n+1)/((3^(2^n)) - 1) ???
      qwq32b insist that valid answer is s_n=2^n-2+2^n/((3^(2^(n-1))) - 1),
      and it is wrong
      valid answer s_n=2^n-2+2^(n+1)/((3^(2^(n))) - 1)
      i did ask it write python program and check numerically which one is correct, my version was correct :) (??? is point where i spotted mistake in qwq32b math, it did get lost in constant -1 +1 +1 ... and made -1 for some reason in final index)
      p.s. it does gets many integrals correctly including exponentially fascinating one.

  • @slavinojunepri7648
    @slavinojunepri7648 День тому

    Fantastic

  • @MarrafaGhost0zero
    @MarrafaGhost0zero День тому

  • @giuseppemalaguti435
    @giuseppemalaguti435 17 годин тому

    A me sembra semplicemente Γ"(2)...derivò due volte la funzione gamma .I=(ω(2))^2+ψ1(2)=0,4225^2-(π^2/6-1)=0,823693..

  • @aravindchallenger3116
    @aravindchallenger3116 День тому +2

    hi bro

    • @maths_505
      @maths_505  День тому +2

      Yo

    • @aravindakannank.s.
      @aravindakannank.s. 14 годин тому +1

      ​@@maths_505Bro it's me from another account 😅
      I was trying to not focus on math by switching into that account to watch cinema or random content
      Guess what , youtube saw through that and showed your video and I started watching again from another account 😂 also.

  • @yoav613
    @yoav613 День тому

    Noice

  • @maxvangulik1988
    @maxvangulik1988 День тому +2

    t=e^x
    dt=e^x•dx
    I=int[0,♾️](t•ln^2(t)e^-t)dt
    I=Ř''(2)
    Ř'(x)=¥(x)Ř(x)
    Ř''(x)=Ř(x)(¥,(x)+¥^2(x))
    Ř(2)=1
    ¥(2)=1-ř
    ¥,(2)=pi^2/6-1
    I=Ř''(2)=pi^2/6-2ř+ř^2

    • @Mathguy1729
      @Mathguy1729 День тому +2

      Why don’t you write ∫{0→∞}, Γ, ψ, γ, π, instead of those uncommon symbols?

    • @maxvangulik1988
      @maxvangulik1988 14 годин тому +1

      @ I'm working with an iphone 12 keyboard

    • @Mathguy1729
      @Mathguy1729 6 годин тому

      @@maxvangulik1988 Hmm… not sure but I suggest you copy some syntax online. Things like Σₙ xⁿ/n! is way more easier to read than things like Š[n](x^n/n!) which is still better than raw latex like \sum_{n}\frac{x^{n}}{n!}

    • @maxvangulik1988
      @maxvangulik1988 6 годин тому

      @ i would write that as "sum[n=1,♾️](x^n/n!)"

    • @maxvangulik1988
      @maxvangulik1988 6 годин тому

      I always specify both bounds