Modular forms: Modular functions

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 15

  • @officialEricBG
    @officialEricBG 3 роки тому +25

    the more I watch this series, the more I think the very existence of (non-trivial) modular forms is a miracle

    • @officialEricBG
      @officialEricBG 3 роки тому +3

      @@ericvosselmans5657 it's never too late! :D

  • @criskity
    @criskity 3 роки тому +6

    This is mind-bending, neuron-jangling material.

  • @unkennyvalley287
    @unkennyvalley287 3 роки тому +3

    This was related to my undergrad thesis... Time to walk down the memory lane

  • @alirezaghadami2929
    @alirezaghadami2929 3 роки тому +2

    amazing videos, keep it up 👍

  • @CodingDragon04
    @CodingDragon04 3 роки тому

    At 5:12, can't f have an infinite number of poles in the upper half plane going upwards? In this case step (1) would give an infinite product. Or would this imply that f is not meromorphic at i\infty?

    • @eikotokura1117
      @eikotokura1117 5 місяців тому +2

      poles must be isolated, unless you have an essential singularity which is not meromorphic anymore. The fundamental domain is compact so it only allows finite many isolated points thus poles

  • @bobbobson6867
    @bobbobson6867 3 роки тому +2

    I believe j(t) is related by the expression A(t)/B(t)^3 = 1-720/j(t) where B(t) is the theta function over the lattice E8 and A(t) is the theta function over the 12 dimensional Leech Lattice. I think this is a neat way to describe a modular function?

    • @timelsen2236
      @timelsen2236 3 роки тому

      The fundamental domain has area π/3 so 12 of them cover the Riemann sphere of area 4π? But we're on the half plane and it has an infinite # of fundamental domains. Also one was glued to form a disk then compacted by the point at infinity making the sphere of 4π?

  • @jeffreyhowarth7850
    @jeffreyhowarth7850 3 роки тому

    Category algebra generalize the notion of group algebras . Stack is a generalization of schemes. Automorphic forms are a generalization of periodic functions. Tensors are a generalization of scalers. Any thoughts on the word 'generalization' ?

  • @AmirKhan-yy5ev
    @AmirKhan-yy5ev 3 роки тому

    Amazing...

  • @migarsormrapophis2755
    @migarsormrapophis2755 3 роки тому +1

    yeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

  • @truthteller4689
    @truthteller4689 3 роки тому

    Who think he looks like the actor Jonathan Pryce?

  • @TheAbyssCOC
    @TheAbyssCOC 3 роки тому

    First

  • @lumpi806
    @lumpi806 Рік тому

    badly explained