Modular forms: Fundamental domain

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 11

  • @rgicquaud
    @rgicquaud 3 роки тому +16

    That way of describing the fundamental domain is just amazing! I always saw it described in terms of the action of SL_2(Z) and this is way simpler!

    • @donnypassary5798
      @donnypassary5798 3 роки тому +3

      Although technically these ways are equivalent, for me this is indeed easier to catch up!

  • @eric3813
    @eric3813 3 роки тому +8

    Damn i Love modular forms!
    I am really greatfull for These awesome lectures!

  • @newtonswig
    @newtonswig 3 роки тому +5

    I have to say, these lectures are everything I’d hoped for! Thanks so much!

  • @xaviergenereux6527
    @xaviergenereux6527 3 роки тому +2

    In "a survey of algebraic coding theory", Berlekamp mentions Binary Quadratic Residue Codes. He then goes on to prove that they are invariant under the same action as we talked about for modular forms. Are they exemples of modular function?

  • @mathematics5573
    @mathematics5573 3 роки тому +1

    this in incredibly technical, and beyond 99.999% of the population.

  • @trumpyla
    @trumpyla 3 роки тому +1

    Wow! More content this is magical

  • @yunjiangjiang6146
    @yunjiangjiang6146 2 роки тому +1

    I am a little confused by the lattices. Why can one of the two generating vectors always chosen to be 1? Why are w_2 in other parts of the fundamental domain not ambiguous?

  • @sewonhwang8564
    @sewonhwang8564 2 місяці тому

    The best

  • @igorLXIV
    @igorLXIV 3 роки тому

    Could you consider suggesting some exercises in the future?
    As usual if you cannot solve simple exercises you have not understood 😊

  • @migarsormrapophis2755
    @migarsormrapophis2755 3 роки тому +4

    yeeeeeeeeeeeeee