Modular forms: Product formula for j

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 11

  • @epsilonmath6774
    @epsilonmath6774 3 роки тому +10

    I love modular forms and always found them interesting. Thank you for your wonderful lecture

    • @brian8507
      @brian8507 3 роки тому +2

      Modular forms and number theory in general is just a reminder how fucking spooky 👻 numbers are. I find this shit truly horrifying ...

  • @antoinebrgt
    @antoinebrgt 3 роки тому +1

    Great lecture, the interpretation as a Weyl denominator formula was truly unexpected!

  • @brendanyounger4511
    @brendanyounger4511 Рік тому +1

    I love how around minute 6 he casually brings up the correspondence with the monster group, _which he won the Fields Medal for_.

  • @MichaelFJ1969
    @MichaelFJ1969 3 роки тому +1

    Thank you for making these videos. I'm learning a lot from watching them.

  • @rosieshen8431
    @rosieshen8431 3 роки тому +1

    7:25 The formula should be multiplied by m (and so 9:41 the term in blue circle should be T_m/m. Of course this does not affect the proof as T_m/m is still a modular function):
    From last lecture we have T_m(\sum c_n q_n) = \sum_{k|m} \sum_{j=0^{d-1}} \sum_n c_n q^{nm/k^2} e^{2 pi i nj/d}.
    Summing over j, we obtain \sum_{k|m} \sum_n k c(nk) q^{nm/k}.
    Change k -> m/k, this becomes \sum_{k|m} \sum_n k c(nm/k) q^{nk}.
    Change nk -> n, we get the claimed formula for T_m :
    \sum_{k|m} \sum_{k|n} m/k c(nm/k^2) q^n

  • @omrizemer6323
    @omrizemer6323 3 роки тому +1

    This proof was magical

  • @sx86
    @sx86 3 роки тому +1

    I recall it was said in one of the previous lectures that the constant term of j "should" be 24. So, is there any reason for why we're studying j-744 instead of j-720?

    • @antoinebrgt
      @antoinebrgt 3 роки тому

      The only point here is that you want to kill the constant term, so with the "correct" definition you would be looking at j-24 :)

  • @rohitchatterjee2327
    @rohitchatterjee2327 3 роки тому +1

    Wow! This may be the only place on the Internet where the definition of hecke operators isn’t immediately followed by wife for a, atkin lehner theory and products of L functions

  • @migarsormrapophis2755
    @migarsormrapophis2755 3 роки тому +5

    YEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE