Direct Image of Intersection of Sets under an Injective Function Proof

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 14

  • @TheMathSorcerer
    @TheMathSorcerer  10 років тому +8

  • @krishnasingh662
    @krishnasingh662 5 років тому +3

    thanks man... I watch all preimage and direct image videos .... helped a lot... thanks once again

  • @rikyikhwan9739
    @rikyikhwan9739 Рік тому +1

    Thanks man, super clear, highly appreciated. One question, what if the f is not injective?

  • @owenallen2215
    @owenallen2215 6 років тому +4

    You're doing Gods work.

  • @reinhardwilmer
    @reinhardwilmer 5 років тому +6

    Wait so does this work for every function or only injective functions?

    • @TheMathSorcerer
      @TheMathSorcerer  5 років тому

      equality works for injective only:)

    • @wontpower
      @wontpower 5 років тому +9

      If f were not injective, then you can only show that f(A∩B) ⊆ f(A) ∩ f(B).
      For instance, consider the function R -> R f(x) = x^2, which is not injective, (i.e. you can find two different values of x that map to the same number, for example, -1 and 1). Also consider the sets A = { -1 } and B = { 1 }.
      The intersection of A and B is empty, meaning f(A∩B) is also empty.
      However, f(A) = { 1 } and f(B) = { 1 }. So, the intersection of f(A) and f(B) is { 1 }.
      So in this case, you have a strict subset. f(A∩B) = φ ⊂ { 1 } = f(A) ∩ f(B)

  • @mattetor6726
    @mattetor6726 Рік тому +1

    Thank you!

  • @Anteater23
    @Anteater23 5 років тому

    What about the converse to this?

  • @tumelotlhaodi8577
    @tumelotlhaodi8577 4 роки тому

    bro you just help me with part a of my problem which says, Let f : A→B be a mapping. a) Prove that if f is injective then f(C∩D)=f(C)∩f(D) for all the subsets C,D of A. b) Prove that f is injective if and only if for each subset C of A f(C)∩f(A-C)=∅. can you help me how i can approach b)

  • @冈本近平
    @冈本近平 2 роки тому +1

    thanks!

  • @fvs3189
    @fvs3189 5 років тому +1

    Thank u