This Integral Will Make You Better At Calculus

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 168

  • @BriTheMathGuy
    @BriTheMathGuy  2 роки тому +34

    🎓Become a Math Master With My Intro To Proofs Course! (FREE ON UA-cam)
    ua-cam.com/video/3czgfHULZCs/v-deo.html

    • @LorddualDesigner
      @LorddualDesigner 2 роки тому

      Hey. Do the sum of 1/x^x, from x = 1 to infinity
      1/1¹ + 1/2² + 1/3³ + 1/4⁴ + ...

    • @manioqqqq
      @manioqqqq 2 роки тому +1

      @@LorddualDesigner ~1.2915
      Used desmos

    • @LorddualDesigner
      @LorddualDesigner 2 роки тому

      @@manioqqqq hey
      How did you do it?

  • @sandeshshrestha483
    @sandeshshrestha483 2 роки тому +80

    Solving integral of tanx dx: 🙂
    Solving integral of sqrt. tanx dx: 🙁

  • @PunmasterSTP
    @PunmasterSTP 2 роки тому +355

    Better at calculus? More like "Thank you for schooling us!" I really liked the showcase of these different techniques and how you can break things up with algebra.

    • @BriTheMathGuy
      @BriTheMathGuy  2 роки тому +28

      Glad you enjoyed it!

    • @PunmasterSTP
      @PunmasterSTP 2 роки тому +23

      @@BriTheMathGuy Yes, it was inte-great!

    • @leif1075
      @leif1075 Рік тому +1

      ​​@@PunmasterSTPouldn't you agree the multiplying and dividing by the same thing or adding and subtracting the same thing is a trick thst comes out or nowhere and I don't see anyone thinking of that unless shown it before.I LOATHEit and wish it would be abolished...with regard to the 1/u^2 here?

    • @leif1075
      @leif1075 Рік тому +1

      ​@@BriTheMathGuyinstead of all the adding and subtracting can't you just rewrite as (u +1/u)^2 minus 2 and then so the subsitution z equals u plus 1/u and then procees from there and just write the derivative 1/u^2 interms of z?

    • @PunmasterSTP
      @PunmasterSTP Рік тому

      @@leif1075 Thank you for sharing! After all my life experiences up to this point, it seems like life is just a whole bunch of experimentation. Someone finds a way to do something, so they do it. Maybe it appeals to them, maybe because they’ve seen something similar before. It’s a great big mystery.
      I’m by no means an integration master, but I try to follow along and leave a odd comment to show support and see what responses I get. It’s been fun, and if it can lead to someone showing a better way, I’m stoked!

  • @nontth5355
    @nontth5355 2 роки тому +51

    I do this integral with out any help. It took me an hour but Im very proud of it.

    • @nontth5355
      @nontth5355 2 роки тому

      I didn't do it the same way the video did. I use partial (bcuz this is on the exercise on partial in Cal1)

    • @AbsoluteArtist
      @AbsoluteArtist 2 роки тому

      @@nontth5355 hey can u elaborate the method, this question was asked in my highschool tests, did partially the same method what he did in the video but got stuck at the end , so tried another way by using by parts , it still got messy

    • @nontth5355
      @nontth5355 2 роки тому +5

      @@AbsoluteArtist ok I’ll start at integral of 2u^2/(u^4+1) du
      u can factor u^4+1 like this:
      u^4+1 = (u^4+2u^2+1)-2u^2
      = (u^2+1)^2 - (sqrt(2)u)^2
      = (u^2+sqrt(2)u+1)(u^2-sqrt(2)u+1)
      solve for coefficient A,B,C and D of
      (Au+B)/(u^2+sqrt(2)u+1) + (Cu+D)/(u^2-sqrt(2)u+1) = 2u^2/(u^4+1)
      then u get 2 integral slightly easier to work with I’ll show u how to do the first one
      int (Au+B)/(u^2+sqrt(2)u+1) du
      split into
      (Au+B)/(u^2+sqrt(2)u+1) = (Au+A/sqrt(2))/(u^2+sqrt(2)u+1) + (B-A/sqrt(2))/(u^2+sqrt(2)u+1)
      first one just let the denominator be a new variable and use chain rule u’ll got something like (A/2)ln(u^2+sqrt(2)u+1)+C
      second one is quite tricky u can write the denominator as (u+1/sqrt(2))^2+(1/sqrt(2))^2)
      and use the fact that int 1/(x^2+a^2) dx = (1/a)arctan(x/a)+C. u can find the integral of the second one.
      solve for the last one in the similar way then u get the solution.
      (sorry for bad english. i suc)

    • @ಠ_ಠ-ಭ2ಷ
      @ಠ_ಠ-ಭ2ಷ 9 місяців тому

      genius

    • @DilipPatel-h3e
      @DilipPatel-h3e 2 місяці тому

      ​@@nontth5355 same method bro😮

  • @skylardeslypere9909
    @skylardeslypere9909 2 роки тому +71

    1:42, right here, you can also use a partial fraction decomposition. Write the denominator as follows:
    u⁴+1 = u⁴ + 2u² + 1 - 2u² (adding zero)
    = (u²+1)² - (√(2) u)²
    = [ u² - √(2) u + 1] [ u² + √(2) u + 1]
    And now we have written the denominator as the product of two quadratic factors, which we can split using partial fractions. Then we are just integrating a linear term over a quadratic term, which has a fairly standard type of solution involving logarithms and inverse tangents.

    • @bmw123ck
      @bmw123ck 2 роки тому +5

      this one would have been my approach!

  • @BCQM_BCQM
    @BCQM_BCQM 2 роки тому +198

    Just to clarify, the inverse of hyperbolic tangent function is artanh, not arctanh, with "ar" meaning area instead of arc; also, the domain of artanh is (-1, 1), which does not include any of (u+1/u)/√2. Therefore, the result should be arcoth instead of artanh.
    Anyway thanks for sharing this problem, it's fun to solve.

    • @ricky哥
      @ricky哥 2 роки тому +1

      battle cat

    • @Ah-nf2vs
      @Ah-nf2vs 2 роки тому +8

      What are y'all guys talking about?😕

    • @muhilan8540
      @muhilan8540 2 роки тому +3

      @@Ah-nf2vs hyperbolic tangent and its inverse

    • @seroujghazarian6343
      @seroujghazarian6343 2 роки тому

      Or arg (for argument)

    • @itsphoenixingtime
      @itsphoenixingtime 2 роки тому +6

      @@seroujghazarian6343 Honestly I would rather just do partial fraction bc i dont really see the point of using another function to find integral of 1/x^2-a^2 , it can be done as so and then everything will be in recognisable function like ln and arctan, i dont know if anyone would use arccoth or arctanh

  • @GroundThing
    @GroundThing 2 роки тому +54

    I couldn't remember my trigonometric derivatives, outside sin and cos (though honestly I'm not sure why I didn't just do quotient rule), so I tried to make it something more manageable using Euler's formula and after like 10 minutes of work, I managed to circle my way back around to sqrt(tan(x)) = sqrt(tan(x)).

    • @lambachurro8790
      @lambachurro8790 2 роки тому +9

      atleast u didnt do anything wrong

    • @odio_stationofficial3420
      @odio_stationofficial3420 5 місяців тому +1

      You literally squirted..I mean squarerooted tan(x) 😅

    • @yante7
      @yante7 Місяць тому

      haha eulers formula.. "circle back around" hehehehe i see what you did there

  • @chessthejameswei
    @chessthejameswei 2 роки тому +15

    Great intro (or lack thereof)! I like the just jumping right into it and not wasting any time to tackle this monster!

  • @a.syndeed
    @a.syndeed 2 роки тому +10

    You could use the natural log version of the formula instead of the hyperbolic arctangent one, as more people are familiar with that one. That's the one they taught me in high school.

  • @jayant7753
    @jayant7753 8 місяців тому +4

    And how tf am i supposed to know all that during my exam

  • @manucitomx
    @manucitomx 2 роки тому +75

    I don’t know if I’m better at Calculus now, I know I was very informed.
    Thank you for this channel.

  • @matrix8163
    @matrix8163 2 роки тому +14

    Quite interesting...
    I'm just a high school student and I've started learning calculus these days so this type of question are quite challenging for me. But I love challenges 😁
    Thanks for sharing such type of question.

  • @rubenvela44
    @rubenvela44 2 роки тому +2

    My head is super warm

  • @aleksandardashich
    @aleksandardashich 2 роки тому +3

    On my exam last year I had to do integral
    ln(x²+1)e^sqrt(tan(x)) and it split up basically on ln(x²+1) which was not that hard.But for sqrt(tan(x)) it was little bit complicated, I did everything the same till 1:42 when I used partial fractions.I remember it took me very long time to calculate coefficients 'cause I got somehow all of them zero so I tried three times till I finally resolved them, then it took some of work to finish it but it was very challenging, exam took two hours and I was doing this for about 45 minutes.

    • @violintegral
      @violintegral 2 роки тому +3

      ln(x²+1)exp(√(tan(x))) certainly does not have an elementary antiderivative

    • @aleksandardashich
      @aleksandardashich 2 роки тому +4

      @@violintegral I just forgot a parenthesis so it should be ln((x²+1)*e^sqrt(tan(x))).So you use rule of logaritms ln(a*b)=lna+lnb si ln(x²+1)e^(sqrt(tan(x)))=ln(x²+1)+lne^(sqrt(tan(x))) and than by rule of logaritms
      lne^sqrt(tan(x))=sqrt(tan(x))*lne and we know that lne=1 so it leaves just sqrt(tan(x)).

    • @violintegral
      @violintegral 2 роки тому

      @@aleksandardashich oh ok that makes a lot more sense lol

  • @michaellarson2184
    @michaellarson2184 2 роки тому +3

    I did it by just factoring u^4+1 as (u^2-usqrt(2)+1)(u^2+usqrt(2)+1). You get the same answer although it does take a lot more work.

  • @ramadanierdogan
    @ramadanierdogan 2 роки тому +5

    my favorite integral

  • @Math2tor
    @Math2tor Рік тому +1

    Excellent video!

  • @jacr.z.3594
    @jacr.z.3594 2 роки тому +2

    I recently learned how to use power series to expand functions like this and get an approximation and honestly it feels liberating to not have to focus on getting an exact function, especially since applied math makes me worry about my future career

  • @roy1665
    @roy1665 7 місяців тому

    Thank you!

  • @gurjyotsingh9832
    @gurjyotsingh9832 Рік тому +2

    Integration of 1/x²-a² = (1/2a)ln|(x-a)/(x+a)| +c,ez

    • @david_varela_pt
      @david_varela_pt 11 місяців тому

      yes, the arctanh(x) function can actually be represented as (1/2)(ln((1+x)/(1-x))

    • @jomariraphaellmangahas1991
      @jomariraphaellmangahas1991 10 місяців тому

      ​@@david_varela_pt But this is a better integral compared to the arctanh and arccoth that has the same integral but different domain

  • @jamirimaj6880
    @jamirimaj6880 2 роки тому +17

    What happens when 0 has a value in a function but is undefined in its integral like this one? How can we compute the definite integral from 0 to 1 for example if 0 is undefined in the formula, but 0 to 1 definitely has an area under the curve?

    • @BriTheMathGuy
      @BriTheMathGuy  2 роки тому +4

      Approximations (although not always as pleasing) can work very well. You could also try a different form integration (Lebesgue for example).

    • @haydenjones5470
      @haydenjones5470 2 роки тому +1

      Take the limit as x->0+

    • @angelmendez-rivera351
      @angelmendez-rivera351 2 роки тому

      tan(0) = 0 is well-defined, though.

    • @jamirimaj6880
      @jamirimaj6880 2 роки тому +1

      @@angelmendez-rivera351 I said it in my comment. Defined in the function but undefined in its integral.

    • @angelmendez-rivera351
      @angelmendez-rivera351 2 роки тому

      @@jamirimaj6880 Your comment explains nothing. What does it mean for 0 to be undefined in the integral? The integral is not a function you can plug numbers in.

  • @TheScienceGuy10
    @TheScienceGuy10 2 роки тому +5

    God I remember doing this integral a few years ago 🤦‍♂️

  • @adityavsx
    @adityavsx 2 роки тому

    You my man, have earned ALL your subscriptions

  • @parthhooda3713
    @parthhooda3713 8 місяців тому

    Now differentiate it to prove that it indeed equals √tanx

  • @89erbenny
    @89erbenny 2 роки тому

    The UA-cam algorithm and you, Sir, just made me a better person.

  • @nzpgamerz8617
    @nzpgamerz8617 2 роки тому +7

    love you from INDIA 🇮🇳

  • @AbsoluteArtist
    @AbsoluteArtist 2 роки тому

    This question was asked in high school tests, left it after solving it a bit

  • @Владислав-б8з6ю
    @Владислав-б8з6ю 2 роки тому +1

    Кстати, после замены на u, можно было дальше представить дробь в виде суммы элементарных дробей методом неопределенных коэффициентов

  • @midnightphantom4787
    @midnightphantom4787 Рік тому

    My brain is dizzy .

  • @niharchuri1081
    @niharchuri1081 2 роки тому

    i just had a brain aneurysm

  • @darshitdesai1416
    @darshitdesai1416 2 роки тому +1

    This integral got asked in our board exams which is considered as one of the easy exams.....

  • @CAG2
    @CAG2 2 роки тому +2

    mixing times new roman with computer modern (the latex font) in the last slide is a bit erm

  • @aveersingh7634
    @aveersingh7634 2 роки тому

    At 3:11 why dont we integrate
    (1+(1/u^2)/(u^2+(1/u^2) ? Is it because the denominator will be u^4+1, numerator will be u^2+1?

  • @helloworld2024-h8i
    @helloworld2024-h8i 8 місяців тому

    2:21 Famous first step or why does this work?

  • @holyshit922
    @holyshit922 2 роки тому

    In itegrals usually is better to write derivative of tangent as 1+tan^2(x)
    If you calculate derivative of tangent by the limit you will get 1+tan^2(x)
    Why it is better because in most cases you will rave to replace function depending on old variable with function depending on new variable

  • @SANTOSHKUMAR-cy5bs
    @SANTOSHKUMAR-cy5bs 11 місяців тому

    at last the formula for INTGRAL 1/x2-2 =is actually in form of log [ ]

  • @ThatLooksLikeARake
    @ThatLooksLikeARake 2 роки тому +2

    WHO WOULD THINK OF COMING UP WITH ALL THE ALGEBRA TRICKS BRUUUUUUUUUH..... maybe calc is not for me lol

  • @fairnut6418
    @fairnut6418 2 роки тому

    Nice, now I can solve this particular equation... probably

  • @cpotisch
    @cpotisch 2 роки тому +6

    Great technique! I only know it with partial fractions, which is a lot more work although it does work for every nth root of tan.

  • @Kai-em9me
    @Kai-em9me 10 місяців тому

    Last part incorrect formula that isnt going to be arc tan x it is going to be 1/2a log (x-a/x+a).Obviously log cant take negative value so take modulus inside.

  • @yante7
    @yante7 Місяць тому

    there are a lot of steps here, and i understand each one individually; but how would one go about solving this without knowing these steps beforehand? just a load of trial and error? that seems painful

  • @scarletevans4474
    @scarletevans4474 Рік тому

    4:53 who was an "Einstein" that thought it's a good idea to use very DARK blue font on the BLACK background, to make it almost unreadable? 🤔🤔🤔
    Just write "do it yourself" in a more visible colors or something :P

  • @aashsyed1277
    @aashsyed1277 2 роки тому

    4:59 the blue is hard to see

  • @_rstcm
    @_rstcm 4 місяці тому

    Isn't the integral of 1/z^2-2 also 1/2sqrt2(ln|z-sqrt2/z+sqrt2|) ?

  • @cloverisfan818
    @cloverisfan818 2 роки тому

    When you solve the problem but forget to add c

  • @AkmM-hp8yx
    @AkmM-hp8yx 2 роки тому

    There is another easy way of doing this

  • @yoav613
    @yoav613 2 роки тому +1

    Cool!💯💯

  • @jdrimon6425
    @jdrimon6425 2 роки тому +1

    Very impressive, but can you do the integral of (tan(x))^(1/5)dx?

    • @vybs9235
      @vybs9235 Рік тому

      Will fenymans trick work

    • @vybs9235
      @vybs9235 Рік тому

      Is it (tan^2(x) + 4)/400tan^2/5(x) + C?

  • @nuts447
    @nuts447 2 роки тому

    Bro integration by parts is good

  • @ankitbhattacharjee_iitkgp
    @ankitbhattacharjee_iitkgp Рік тому

    There is a much simpler way to solve this. Write
    √tanx = 0.5[(√tanx+√cotx)+(√tanx-√cotx)]
    That makes things simpler

  • @drumman22
    @drumman22 2 роки тому +1

    Damn I would never be able to do this by myself lmao. Cool integral though

  • @jugrajsingh682
    @jugrajsingh682 2 роки тому

    this is just regular calculus for us indian students preparing for iIT-JEE

  • @rarebeeph1783
    @rarebeeph1783 2 роки тому +1

    why use the artanh definition of the integral of 1/(x^2-a^2) instead of partial fraction decomposition to terms that integrate to natural logs? are there pros and cons to one method or the other?

    • @kashoot4782
      @kashoot4782 2 роки тому

      It doesn’t matter. The answers you get in the end are equivalent, assuming you’ve done it correctly. It just looks sexier to have artanh and tan and arctan in the same expression

  • @nikolakosanovic9931
    @nikolakosanovic9931 2 роки тому

    I got notification
    6 days after video is out

  • @zachary200274
    @zachary200274 2 роки тому

    Id just multiply by one and treat tanx as u and one as dv

  • @omegathan
    @omegathan 2 роки тому

    April Fool's isn't for another couple months ...

  • @dz_burst213
    @dz_burst213 2 роки тому

    Ngl, it's pretty cool, but why are we expected to be able to think of such methods when facing that kind of integrals or any other similar problem during a test, especially when running out of time 😭

  • @aaronemmanuel1691
    @aaronemmanuel1691 2 роки тому

    such a small and innocent question..

  • @peace7439
    @peace7439 2 роки тому +8

    This is a general question given in every class 12 maths book

    • @SuperShadowify
      @SuperShadowify 2 роки тому +6

      Not mine lmao. Gotta stop assuming your experience is the universal one 😬

    • @ron-jr5qw
      @ron-jr5qw 2 роки тому +3

      11th grade actually

    • @timothymattnew
      @timothymattnew 2 роки тому +9

      @@ron-jr5qw they taught this to me the day I learnt my first letter.

    • @flix7280
      @flix7280 2 роки тому +1

      @@ron-jr5qw nah, the book which taught me alphabets, precisely

    • @krishnaasenthil9894
      @krishnaasenthil9894 2 роки тому +2

      @@SuperShadowify Probably this guy's an Indian or Chinese high school student, this kind of problem is very elementary if so, hence why he exaggerated with the "every text book" part.

  • @kirllosatef1522
    @kirllosatef1522 2 роки тому +7

    I'm at the last year of high school and I don't know what are hyperbolic functions are (actually we didn't take it at school)
    But really this is so hard for me to do all of those steps!
    Also I'm quite fascinated that the derivative of this long function is only √tan(x).

    • @cucginel1941
      @cucginel1941 2 роки тому +1

      integral of 1/(x^2 - a^2) = 1/(2a) • ln[(x-a)/(x+a)] + C if i remember correctly

    • @sadkritx6200
      @sadkritx6200 Рік тому

      ​@@cucginel1941yep thats correct

  • @dutsywhitaker455
    @dutsywhitaker455 2 роки тому +1

    Hey! I am wondering if you could do a video on
    how to solve for each variable in the compound
    interest formula. Isolate it on the left hand side. I
    keep getting stuck solving for n. A=P(1+r/n)^nt. I
    can't get it off my mind.

    • @abhinavanand9032
      @abhinavanand9032 Рік тому

      There is no nice solution to this. Just use approximations with newton method or any other

  • @dominicquick107
    @dominicquick107 2 роки тому

    This made me worse at calculus

  • @error5487
    @error5487 11 місяців тому

    no way in hell i can think of these kind of random algebraic splits and substitutions. i'd do partial fractions instead which takes much longer and gives a messy answer. anyway good video!

  • @LorddualDesigner
    @LorddualDesigner 2 роки тому

    Hey. Do the sum of 1/x^x, from x = 1 to infinity

    • @samueljeromillson
      @samueljeromillson 2 роки тому

      Okay well if I do it I will need it for the first semester and I can take a look at the next level and I can make a more sense to get a more dramatic sense and I can understand how to make a more dramatic change to my goal is that we can make it a better day for us and I can make it a lot more for me to do it.

  • @diegoxd321
    @diegoxd321 Рік тому

    This integral was in my frist exam of calculus 2 and nobody can do it

  • @pepsteam9865
    @pepsteam9865 2 роки тому

    amazing

  • @normanfrancisco2063
    @normanfrancisco2063 2 роки тому +2

    Wow...

  • @sooryanarayana3929
    @sooryanarayana3929 2 роки тому

    Now try with sqrt(cot(x))

    • @BriTheMathGuy
      @BriTheMathGuy  2 роки тому

      🤔

    • @krishnaasenthil9894
      @krishnaasenthil9894 2 роки тому

      @@BriTheMathGuy Just differentiate x w.r.t to the solution to the integrand mentioned in this video and then integrate the result w.r.t to dx and that's your ans. This will work ryt?

  • @tunggalnugroho7361
    @tunggalnugroho7361 2 роки тому

    Pls. How about integral of square root sin x ? Help pls

  • @michaelyap939
    @michaelyap939 2 роки тому

    Crazy

  • @ahmedosama7632
    @ahmedosama7632 2 роки тому

    This can be easily solved by beta function (trigonometric form)

  • @alihasanamu
    @alihasanamu 2 роки тому

    Can anybody tell me if such problems are in high school or in college ?

  • @RikyPerdana
    @RikyPerdana 2 роки тому

    I came to a different solution:
    (4√tanx)(1-tan^2(x)) / (1 + tanx)^2
    Edit: wait, that was wrong. My bad

  • @violintegral
    @violintegral 2 роки тому

    I made a comment about a completely different way to evaluate this integral, but for some reason it got deleted :( Anyway, you can integrate sqrt(tan(x)) by considering the integral of sqrt(tan(x) - sqrt(cot(x)) and the integral of sqrt(tan(x)) + sqrt(cot(x)) separately, then taking their sum and dividing by two. As it turns out, both of these integrals can be evaluated with easy substitutions after some intense algebraic manipulation. A Math Stack Exchange post describing this method can be found here: math.stackexchange.com/questions/828640/evaluating-the-indefinite-integral-int-sqrt-tan-x-mathrmdx

  • @pepsteam9865
    @pepsteam9865 2 роки тому

    tanx≥0?

  • @Dukmysick
    @Dukmysick 2 роки тому

    NCERT HAI BISI

  • @nicklarry7791
    @nicklarry7791 2 роки тому +1

    After watching your other videos, this one feels like you made this from your bed. xD. But a good one nonetheless.

    • @BriTheMathGuy
      @BriTheMathGuy  2 роки тому +1

      Any suggestions for improvements? Thanks for watching!

    • @nicklarry7791
      @nicklarry7791 2 роки тому +1

      @@BriTheMathGuy Well, you are the youtuber here, so I'd be stupid to think I know better than you. Its just my personal opinion that the videos where you write on the glass are more engaging. But for a math-enthusiast, I don't mind this one either. Looking forward to more calculus.

  • @3rddegreeyt144
    @3rddegreeyt144 7 днів тому

    Lim 0 to pie/2 ,💀

  • @ahmedadrib
    @ahmedadrib Рік тому +1

    You’re ans is WRONG

  • @GEORGIOSMGEORGIADIS4
    @GEORGIOSMGEORGIADIS4 2 роки тому

    I vaguely remember about this one! 😀
    Truly a neat and important for all its aspects integral! Nice video as always! 😀

  • @toniokettner4821
    @toniokettner4821 2 роки тому

    the cursive d is giving me eye cancer

  • @allarkvarkk8987
    @allarkvarkk8987 2 роки тому

    Why

  • @matteocilla9482
    @matteocilla9482 Рік тому

    I challenge you to derive the final answer 🤣 good luck

  • @yungifez
    @yungifez 2 роки тому +1

    Why just why

  • @TheEndlessVoid-f6b
    @TheEndlessVoid-f6b Місяць тому

    HEEEEESSSS BAAAAAAACCK

  • @SkMessi.
    @SkMessi. 2 роки тому +2

    Wow

  • @bioquimicharles1585
    @bioquimicharles1585 2 роки тому

    A M A Z I N G new sus!

  • @GoodUser-Wenda
    @GoodUser-Wenda Рік тому

  • @finmat95
    @finmat95 2 роки тому

    I hate math

  • @123hhww
    @123hhww 2 роки тому

    Boring af... all this shit to end not use AT ALL!!! 😡

  • @AnshPathak2005
    @AnshPathak2005 Рік тому

    That's a 10th grade calculus problem

  • @ages2001
    @ages2001 2 роки тому

    1000th like!

  • @martinauld670
    @martinauld670 2 роки тому

    Eww

  • @duf2
    @duf2 Рік тому

    You lost me after 1 minute in😂