The Most Intimidating Integral I've Ever Seen

Поділитися
Вставка
  • Опубліковано 13 січ 2025

КОМЕНТАРІ • 266

  • @BriTheMathGuy
    @BriTheMathGuy  Рік тому +3

    🎓Become a Math Master With My Intro To Proofs Course! (FREE ON UA-cam)
    ua-cam.com/video/3czgfHULZCs/v-deo.html

  • @blackpenredpen
    @blackpenredpen 3 роки тому +563

    Beautiful presentation! Love it!

  • @RisetotheEquation
    @RisetotheEquation 3 роки тому +197

    Outstanding. Sometimes I wonder who's more impressive: the student who solved the integral or the person who conjured it.

    • @cakesama9770
      @cakesama9770 3 місяці тому +1

      Definitely the professor

  • @farukkaya4396
    @farukkaya4396 3 роки тому +64

    Arms getting bigger, so is the channel!

  • @victorhernandez-eg7wp
    @victorhernandez-eg7wp 3 роки тому +36

    That was so insightful. I have never dealt with an integral like that, but now I am confident that if I ever see one, not to panic. Thank you! I really enjoyed this video.

  • @flintsteel2700
    @flintsteel2700 3 роки тому +119

    The echo is a little jarring but nonetheless still a beautiful solution to such an intimidating integral! Good stuff

    • @sujitdey1717
      @sujitdey1717 3 роки тому +4

      And i thought i was the one who felt something was different.

    • @BriTheMathGuy
      @BriTheMathGuy  3 роки тому +26

      Sorry about that! It should be fixed in the future.

    • @sujitdey1717
      @sujitdey1717 3 роки тому +5

      @@BriTheMathGuy no problem the math was great as always. Love you and your content. 💙.

  • @yohangross5518
    @yohangross5518 3 роки тому +31

    That's a very very beautiful way of solving a particularly intimidating integral, you just won a suscriber

  • @lucas0m0james
    @lucas0m0james 3 роки тому +14

    Very nice presentation! To be absolutely rigorous though, it'd be nice to mention that each of the series converge for all positive x (ratio test) and that the sum and integral can be interchanged (e.g. tonelli's theorem)

  • @yousifkhalil9655
    @yousifkhalil9655 3 роки тому +25

    Watched to the end, liked, saved to favorite math playlist, already subscribed, there isn't just anything left to do.

  • @MrThrashMan98
    @MrThrashMan98 3 роки тому +16

    Watching these videos makes me realize that my hunger for scientific knowledge is still stronger and bigger than my fatigue after a full-time, warehouse-assistant working day.

    • @BriTheMathGuy
      @BriTheMathGuy  3 роки тому +4

      We all crave it! Thanks for watching after your tough day!

  • @tmsniper9229
    @tmsniper9229 3 роки тому +6

    5:11 i think swapping the integral and the infinite sum there requires using the dominated convergence theorem(if we think about it rigorously), very good presentation overall

  • @tueur2squall973
    @tueur2squall973 3 роки тому +16

    5:05 why can we do this ? Permute the sum and the integral?
    Is it because the sum is converging uniformly on [0,+infinity] ?

    • @Brollyy349
      @Brollyy349 3 роки тому +1

      I'd say dominated convergence theorem, with something like exp(-u+u/2) = exp(-u/2) being the integrable dominant.

    • @Rzko
      @Rzko 3 роки тому

      The integral of the sum is the sum of the integrals because the integral is a linear function. Then you just put out of the integral the terms that don't have 'u', which means they are constants.

    • @tueur2squall973
      @tueur2squall973 3 роки тому +1

      @@Rzko U can do this when Everything is finite , I mean when the sum is finite , but when It's a series (infinite sum) , you need more argument : you need to know if the sum is converging , how it's converging in order to switch the sum with the integral

    • @tueur2squall973
      @tueur2squall973 3 роки тому

      @@Rzko And yeah Thank you , I did understand the following steps

    • @Rzko
      @Rzko 3 роки тому

      @@tueur2squall973 are you sure about that? An infinite sum is just the limit of a partial sum (idk if we say like that in english)

  • @archieharrodine3925
    @archieharrodine3925 3 роки тому +9

    That feeling when n factorial cancels

  • @tomkerruish2982
    @tomkerruish2982 3 роки тому +9

    The second power series (1 + x²/2² + ...) equals the the Bessel function of the first kind J_0 evaluated at ix, although I don't know how that would be helpful in this problem.

    • @angelmendez-rivera351
      @angelmendez-rivera351 2 роки тому +1

      It would be helpful if you are familiar with the Bessel functions, since they satisfy many integral equations.

  • @kummer45
    @kummer45 2 роки тому

    The format of black screen, the math in all the details and the clean process with all the steps makes these series of tutorial useful.

  • @thegodoflols
    @thegodoflols 2 роки тому

    Phenomenal!!
    Your way of presenting a problem is mind-blowing.
    Discussing the possible methods in a step, how to start solving it, best approach ...
    Everything illustrates how good you are in math and throws light on the beauty of math

  • @SaidVSMath
    @SaidVSMath 3 роки тому +4

    Your videos kick ass man, I want to make ones just like them! I love this fast paced but concise format

  • @mehex9858
    @mehex9858 3 роки тому +2

    By looking at that integral, I instantly understood that I would not be able to solve it if I try.
    *And I was not disappointed*

  • @manucitomx
    @manucitomx 3 роки тому +3

    Wow!
    What a great way with words! I love your channel.

  • @kafianan6586
    @kafianan6586 3 роки тому +1

    The way you explain, makes these intimidating integrals seem easier

  • @yusufdenli9363
    @yusufdenli9363 3 роки тому +6

    That was amazing👏👏 Congratulations

  • @aloneworm7
    @aloneworm7 2 роки тому

    4:15 When he said "we still have some exes lingering about' , I felt that

  • @holyshit922
    @holyshit922 2 роки тому

    For the first factor I did the following
    pulled out x,
    substituted u=-x^2/2
    For the second factor i have got second order linear differential equation but not with constant coefficients
    xy''+y'-xy=0
    Second factor will probably be Bessel function
    but when we get first factor Gamma function will be helpful

  • @rishavchoudhuri8806
    @rishavchoudhuri8806 3 роки тому +1

    Subscribed!! Brilliant way of solving the integral as well as presenting it. Loved the video!

  • @거미남자_spidy
    @거미남자_spidy 3 роки тому +1

    hmmmm.. that integral can simplify like
    ʃ (1-x*exp(-x^2))*BesselI(0,x) dx
    and BesselI(0,x) is modified Bessel Function of the First kind

  • @ianbryant
    @ianbryant 3 роки тому

    I like that you get into the math immediately

  • @yomonsbuzz4978
    @yomonsbuzz4978 3 роки тому

    i appreciate this hope that maths will be fun and famous like nothing before once

  • @yoav613
    @yoav613 3 роки тому +1

    Your videos are so fun to watch.😃

  • @arnavsoni1701
    @arnavsoni1701 3 роки тому +2

    You really should become a math professor....

  • @maxkempf7687
    @maxkempf7687 3 роки тому

    That is a suprisingly beautiful result! Thank you for covering this in a video. :D

  • @puceno
    @puceno Рік тому

    at 3:30 u had a chance to turn that sum into e^2x*sum(n=0,infinity,1/2^2n)

  • @pamir8232
    @pamir8232 3 роки тому +1

    The second part can also be written as (x^n)^2 / ((2^n)^2 * (n!)^2) and we can take the entire term into square like (x^n / 2^n * n!) ^2 which we can write as ((x^n/2^n)/n!)^2 = ((x/2)^n /n!) ^2 so we can put it into e^x form like (e^(x/2))^2 which basically is e^x.

    • @violintegral
      @violintegral Рік тому

      You made a mistake. In general, given a sequence a_n, the sum of (a_n)^2 is not equal to (the sum of a_n)^2

  • @Nikolas_Davis
    @Nikolas_Davis 3 роки тому +4

    1:21, you can't use the same summation variable for the two sums, 2nd one should be 'm', or whatever, but not 'n'.

    • @manateepink9100
      @manateepink9100 3 роки тому +2

      Wrong, those aren't nested sums, it's a product of sums, meaning the variable names do not share the same scope and therefore cannot collide.

  • @majdsaleh_
    @majdsaleh_ Рік тому +1

    You release that you're good at math when u start watching the contents in x2

  • @rotsovanvorleak4704
    @rotsovanvorleak4704 3 роки тому

    Such the one of the best teacher ever

  • @dharrshanmahadevan9450
    @dharrshanmahadevan9450 2 роки тому

    i have no clue what he is talking about but i still love it

  • @diegopablogordillovaras106
    @diegopablogordillovaras106 3 роки тому

    Beautiful problem, and very beautiful answer.
    Using the sum representation of the exponential function and the Gamma function… what a ride haha.
    Love your channel!!

  • @eduardoduque6288
    @eduardoduque6288 2 роки тому

    What a tremendous exposition! New subscriber! Thank you for your material! 🌹🔥

  • @malexmartinez4007
    @malexmartinez4007 3 роки тому +2

    The awkward moment when a solution is as pretty as the one presenting it.

  • @marble17
    @marble17 2 роки тому +1

    2:18
    My dirty brain just hears a curse word

  • @sicapanjesis3987
    @sicapanjesis3987 3 роки тому

    Your presentation of the solution always gets me. My best wishes to you and please please continue

  • @muse0622
    @muse0622 3 роки тому +6

    I can explain this integral just one word.
    WOW

  • @blazedinfernape886
    @blazedinfernape886 3 роки тому +23

    Beautiful. I am so proud of myself that I solved it on my own.
    Edit: Okay maybe I didn't solve it completely correct lol I messed up a 2^r and got the answer e instead of sqrt(e)........ that is fine right!?!?!

  • @aashsyed1277
    @aashsyed1277 3 роки тому +4

    You did a HARD putnum problem in 6 minutes!
    So impressed !
    I think you are a genius !

    • @magicmulder
      @magicmulder 3 роки тому +2

      He explained the solution in 6 minutes. No telling how long it took him to find the solution.

    • @aashsyed1277
      @aashsyed1277 3 роки тому +2

      @@magicmulder no but at least he is a genius .........

    • @magicmulder
      @magicmulder 3 роки тому +2

      @@aashsyed1277 He is very good, but most math students could solve that one. Genius is rare. Very rare.

  • @kinshuksinghania4289
    @kinshuksinghania4289 3 роки тому

    Wow!! Absolutely marvelous!!

  • @theayyoutube7711
    @theayyoutube7711 5 місяців тому +1

    Thank you. You have tought me that I really am (x^2)/2

  • @purim_sakamoto
    @purim_sakamoto 3 роки тому

    うおおおお Bravo!!
    めっちゃくちゃわかりやすかったです!!!😍😍😍👍👍👍

  • @PunmasterSTP
    @PunmasterSTP 3 роки тому

    This was amazing; thank you so much for sharing!

  • @aayushsinghsengar7129
    @aayushsinghsengar7129 3 роки тому +2

    this goes way beyond advanced level of that pesky JEE

    • @dfsfssdfsdfs3084
      @dfsfssdfsdfs3084 3 роки тому

      Really? I thought the advanced JEE was the hardest test

  • @henryginn7490
    @henryginn7490 3 роки тому

    I hear so much stuff about the Putnam being ridiculously hard, but every step here was the most obvious thing to do given the current stage. Like it's not something you just scribble down in a hurry, but it's something I imagine most mathematically experienced people could do. Lovely presentation though

  • @maximevanderbeken4712
    @maximevanderbeken4712 3 роки тому +7

    Nice proof ! Now you just need to justify swapping the sum and the integral.. as it cannot always be done .

    • @santiago_moralesduarte
      @santiago_moralesduarte 3 роки тому

      The sum converges to less than e^(u/2)

    • @MatteoDolcin-ye8xm
      @MatteoDolcin-ye8xm 4 місяці тому

      Why can't it always be done? In this case isn't it just a constant in the integral? Still learning so I'm genuinely curious

  • @yahav897
    @yahav897 3 роки тому

    I really enjoy these videos! Can't wait to start taking higher level maths in uni

  • @deekshanaik2438
    @deekshanaik2438 3 роки тому

    I lost track for the first few times but I'm glad I understood this in the end :)

    • @BriTheMathGuy
      @BriTheMathGuy  3 роки тому +1

      it's a tricky one! :) thanks for watching!

    • @deekshanaik2438
      @deekshanaik2438 3 роки тому

      @@BriTheMathGuy yea your vids are quite interesting... Who knew a bio nerd like me would binge math questions some day... Thanks for ur efforts

  • @adithyar4282
    @adithyar4282 3 роки тому

    bro pls make more videos on putnam integrals .They are really interesting. Thank you in advance

  • @manojsurya1005
    @manojsurya1005 3 роки тому +1

    🤩, it was a crazy integral, it involved power series gamma u sub,I want more integrals like this

  • @djridoo
    @djridoo 3 роки тому +1

    So good video !

  • @viniciusmoretti
    @viniciusmoretti 3 роки тому +1

    You say that to all of them.

  • @ashishraje5712
    @ashishraje5712 3 роки тому

    Great u make maths lucid

  • @Diaming787
    @Diaming787 3 роки тому +2

    Is there a Taylor series expansion that expands to the factor of (n!)^2?

  • @azurev2258
    @azurev2258 Рік тому

    it's crazy how something that looks absolutely nasty like this can simplify down into √e at the end

  • @ArjunBhanap
    @ArjunBhanap 3 роки тому

    Incredible explanation!

  • @kummer45
    @kummer45 2 роки тому +1

    Use double factorials. These are useful.

  • @lizs004
    @lizs004 3 роки тому

    Such a great video!

  • @braedenlarson9122
    @braedenlarson9122 3 роки тому

    I love watching *other* people do integrals :)

  • @axbs4863
    @axbs4863 2 роки тому

    That worked out so perfectly lmao

  • @greengirl4985
    @greengirl4985 3 роки тому +10

    Maybe you should make math memes review that would be fun!

  • @spsubjectparaphrased8377
    @spsubjectparaphrased8377 3 роки тому

    Simplified results are beauty gives extraterrestrial vibes.

  • @shehnazsalahuddin6053
    @shehnazsalahuddin6053 3 роки тому +1

    I like your videos very much. One tiny suggestion though- can you slow down your speed while explaining such problems. You go very fast, which is problematic to understand what you are saying. I mean, before even I understand the concept you told, you move to another concept.

  • @caleb-e3s
    @caleb-e3s Місяць тому

    how do you have the cool summation stuff?great vid btw

  • @atrumluminarium
    @atrumluminarium 3 роки тому

    That was quite an aesthetic one

  • @insouciantFox
    @insouciantFox Рік тому

    This is really dangerous from a rigour perspective. The 2nd power series leads to dominated convergence issues that most will just hand wave away, but they are there.

  • @kangmoabel
    @kangmoabel 3 роки тому

    This video is sooooo Good ❤❤
    from Ethiopia, Africa

  • @jc008titan
    @jc008titan 3 роки тому

    3:35 HOW CAN THIS APPEAR ON MY RECOMMENDED AFTER I HAVE JUST MISTAKEN EXACTLY THAT THING AT THE TUESDAY TEST!??!?!?!
    THAT EXACT du=x*dx IS where u=(x^2)/2 IS THE EXACT THING I MISSED! I didn't realise x can be written as the derivative of (x^2)/2 at the test and i magically passed it even with that mistake.

  • @romanoemmanuelle1967
    @romanoemmanuelle1967 3 роки тому +2

    Beautiful!

  • @scotttidwell262
    @scotttidwell262 2 роки тому

    Great video, thanks Bri. What program are you using for the text?

  • @hydropage2855
    @hydropage2855 3 роки тому +1

    This is awesome

  • @raunak1147
    @raunak1147 3 роки тому

    I got the first sum. But was clueless about what to do with (n!)^2...
    Subbing x^2/2=u was brilliant bruh

  • @quantumgaming9180
    @quantumgaming9180 3 роки тому

    Mathematics always blows up my mind

  • @PixelSergey
    @PixelSergey 3 роки тому +1

    This one was very beautiful

  • @nqa1893
    @nqa1893 3 роки тому +2

    Always awesome like you are :-)

  • @loshwoof311
    @loshwoof311 3 роки тому

    cool integral, great video:D

  • @EssentialsOfMath
    @EssentialsOfMath 3 роки тому

    Nice, I was able to do this one! Really awesome integral

  • @tornation5609
    @tornation5609 3 роки тому +3

    Is the echo on purpose ?

    • @BriTheMathGuy
      @BriTheMathGuy  3 роки тому

      Had an issue while recording, Sorry about that! It should be fixed in the future.

  • @Hinyousha
    @Hinyousha 3 роки тому

    can you cancel the x, in the same quick step where you cancel the 2^n?? since one of the limits of integration is 0 you would have a 0/0 in x, I'm not sure if it is allowed to cancel out the x there

  • @YT-uo7fc
    @YT-uo7fc 3 роки тому +3

    why echo?

    • @BriTheMathGuy
      @BriTheMathGuy  3 роки тому

      Sorry about that! It should be fixed in the future.

  • @keldwikchaldain9545
    @keldwikchaldain9545 3 роки тому +1

    What's with the audio issues?

    • @BriTheMathGuy
      @BriTheMathGuy  3 роки тому +1

      Sorry about that! It should be fixed in the future.

  • @orbitalpotato9940
    @orbitalpotato9940 3 роки тому

    Just wait until this guy sees the integral of sqrt(tan(x))

  • @minecraftherobrine1234
    @minecraftherobrine1234 3 роки тому +1

    This is so good

  • @polychromaa
    @polychromaa 3 роки тому

    Are there any other places where i could find an integral like this with two sums multiplied together in the integrand?

  • @daphenomenalz4100
    @daphenomenalz4100 3 роки тому +1

    Why do we always end up at gamma in these types of problems 😂,

  • @frankreashore
    @frankreashore 3 роки тому

    Very nice. Thanks.

  • @крл-я1щ
    @крл-я1щ 3 роки тому +1

    Amazing!

  • @iamtrash288
    @iamtrash288 3 роки тому +1

    Does the second series converge on 0 to INF though? I can't really see it because I suck at evaluating them functional series.

    • @umylten4142
      @umylten4142 3 роки тому

      The second series absolutely converges.
      If I call U(n) = {x^(2n)}/{[2^(2n)]*(n!)^2}, then you have:
      U(n+1)/U(n) = {x^2}/{4(n+1)^2}, which converges to 0 as n -> infinity, for all x in (0, infinity).
      By the ratio test, that series converges.

  • @sujalsalgarkar360
    @sujalsalgarkar360 3 роки тому +1

    These vedios are really good but I want to a one on some mathematical concepts or theory.

  • @ShinySwalot
    @ShinySwalot 3 роки тому

    It all folds together!

  • @harshtandon9309
    @harshtandon9309 3 роки тому

    My first thought: Sum of GP

  • @ashikak5743
    @ashikak5743 3 роки тому +1

    Intimidating ❤️

  • @Happy_Abe
    @Happy_Abe 3 роки тому +1

    I’m confused why the denominator is 2^n*n!
    Shouldn’t it just be 2*n!
    That would be 2*4*6*…*2n like we want

    • @michaeljohnston3038
      @michaeljohnston3038 3 роки тому

      The sum starts at 0

    • @Happy_Abe
      @Happy_Abe 3 роки тому

      @@michaeljohnston3038 not sure how that answers that

    • @carmangreenway
      @carmangreenway 3 роки тому +1

      You're right. I commented it too. I think the original problem was just written down wrong, since the gamma function comes out so readily.

    • @carmangreenway
      @carmangreenway 3 роки тому

      Never mind, we were wrong! 2*4*6*8*10... is the same as 1*(2)*2*(2)*3*(2)*4*(2)*5*(2) so you can factor out 2^n from the n!

    • @Happy_Abe
      @Happy_Abe 3 роки тому +1

      @@carmangreenway oh thank you, good explanation

  • @normanfrancisco2063
    @normanfrancisco2063 3 роки тому

    Woah!!! Mind blown...

  • @mohammedal-haddad2652
    @mohammedal-haddad2652 3 роки тому

    Incredible!