integral of sqrt(tan(x)) by brute force

Поділитися
Вставка
  • Опубліковано 27 гру 2024

КОМЕНТАРІ •

  • @blackpenredpen
    @blackpenredpen  7 років тому +764

    Sorry for the reupload.
    I actually had a mistake on the integral of 1/(x^2-a^2) in the previous video.
    I will make up to you guys by checking my answer by differentiation! That video will be done soon!

    • @zackthotho7459
      @zackthotho7459 7 років тому +4

      Np. it is fine

    • @lxathu
      @lxathu 7 років тому +3

      This one's more worth the storage area of google than a dozen 9 percent of the content of YT.

    • @KeyMan137
      @KeyMan137 7 років тому +1

      blackpenredpen Thanks

    • @AhnafAbdullah
      @AhnafAbdullah 7 років тому +2

      Did you have to redo the video? or just edit the definition that showed on screen

    • @subinmdr
      @subinmdr 7 років тому +1

      How do we factorize (u^4 + 1) ? plz

  • @barqueros2001
    @barqueros2001 7 років тому +1234

    you know something is hard when blackpenredpen uses five colours

    • @seshnarayan7972
      @seshnarayan7972 3 роки тому +13

      I only noticed 4 colours

    • @spooky2526
      @spooky2526 3 роки тому +23

      @@seshnarayan7972 blue black red green purple!

    • @createyourownfuture5410
      @createyourownfuture5410 2 роки тому +4

      @@spooky2526 Where is purple?

    • @esajpsasipes2822
      @esajpsasipes2822 Рік тому +3

      @@createyourownfuture5410 he mentioned he uses purple for the second part of observe section (10:39) although it doesn't look that diffirent from blue

  • @Gillespie28
    @Gillespie28 7 років тому +869

    I think my professor summed up integration in a nice way. He said differentiation is all about technique. You see a scenario and have a set of rules you then follow. Integration is a form of art. It's much more intricate and delicate.

    • @blackpenredpen
      @blackpenredpen  7 років тому +158

      TheDaltonGillespie I totally agree!!! Has he done this integral with u guys?

    • @agmt233
      @agmt233 6 років тому +83

      My Further Maths teacher calls integration Black Magic. Two kinds of people I guess

    • @marcushendriksen8415
      @marcushendriksen8415 5 років тому +39

      Integration is definitely more difficult, and thus satisfying

    • @tommyron1792
      @tommyron1792 5 років тому +42

      I agree. It takes a clever mind to do differentiation problems with ease. But it takes a creative mind to do integration problems.

    • @shoobadoo123
      @shoobadoo123 5 років тому +5

      AGMT further math? Are you international baccalaureate?

  • @MrSnowy737
    @MrSnowy737 7 років тому +2408

    Imagine doing all this and then forgetting the +c

    • @Thelimitsof
      @Thelimitsof 5 років тому +20

      Hamish Blair lol

    • @shayanmoosavi9139
      @shayanmoosavi9139 5 років тому +110

      You would get zero marks in exam😂😂😂😂

    • @yrcmurthy8323
      @yrcmurthy8323 5 років тому +3

      Edit the video

    • @triviumfanmexico
      @triviumfanmexico 5 років тому +30

      It actually happened to me in an exam :(

    • @الأستاذأكرمقطار
      @الأستاذأكرمقطار 5 років тому +12

      According to the question. For example, if the question is to find an original function for the next function, the answer without the constant is correct. But if the question is assigned to all the original functions. It must make +C

  • @eganrabiee627
    @eganrabiee627 5 років тому +277

    "Welcome to the Salty Spitoon, how tough are ya?"
    "How tough am I? I just integrated a trig function!"
    "Yeah, so?"
    "integral(sqrt(tan x))dx"
    "Uh, right this way..."

  • @whiz8569
    @whiz8569 7 років тому +1075

    "1+1 is 2, right?"
    Calculus, everybody.

  • @rileywells3045
    @rileywells3045 6 років тому +141

    Mr Math Man.
    Math Me a Man.
    Make him integrate the square root of tan.

    • @kastormorgan1536
      @kastormorgan1536 6 років тому +4

      stealing my joke, still love you though babe

  • @Chrisuan
    @Chrisuan 4 роки тому +51

    Me when finding this channel: "wtf is going on?!"
    Me rewatching 1 year later after having seen every bprp video: "alright easy didn't even need the DI setup"

  • @tesfayebabore6862
    @tesfayebabore6862 4 роки тому +95

    this is pure game. There are very very few maths teachers at level of you. Thank you.

  • @viktorsundstrom1217
    @viktorsundstrom1217 7 років тому +171

    Integration is just the easiest thing ever... I can integrate √tanx + e^x² in seconds:
    Set up the integral:
    ∫ √(tan(x)) + e^x² dt
    And then just use the "inverse" power rule:
    (t)√(tan(x))+ (t)e^x²
    And we're done...
    I didn't say that I'ld do it with respect to x...

    • @restitutororbis964
      @restitutororbis964 6 років тому +35

      Viktor Sundström LOL, or you could use horseshoe integration, Indeed one of the most powerful mathematical tools out there.

    • @neilshah754
      @neilshah754 6 років тому +126

      Still forgot the +c dude 😂

    • @cesarturanzasfarill2976
      @cesarturanzasfarill2976 6 років тому +1

      Sólo los pendejos dicen que está facil resolver un problema.

    • @gbugis6706
      @gbugis6706 5 років тому +10

      @@neilshah754 *depression intensifies*

    • @pablovirus
      @pablovirus 4 роки тому

      @@cesarturanzasfarill2976 calmate viejo, era un chiste. No lo entendiste??

  • @vishsri
    @vishsri 3 роки тому +29

    Wow..you demonstrated this before 100k subs more than 3 years ago, today you have 687k. Wishing you for the next 313k

  • @프로틴요플레
    @프로틴요플레 2 роки тому +27

    I'm preparing a transfer exam for Korean universities and there was this question on my preparation problem set. Your solution was so helpful brother, thanks a lot!

    • @Awai_quotes
      @Awai_quotes 2 роки тому +1

      And what you doing? In uni?

    • @프로틴요플레
      @프로틴요플레 Рік тому +6

      @@Awai_quotes Electrical and Computer Engineering, but I think I failed the exam. I might just quit and make indie game

    • @alfredomulleretxeberria4239
      @alfredomulleretxeberria4239 Рік тому +2

      @@프로틴요플레 So...how did it go for you?

  • @XTheDentist
    @XTheDentist 6 років тому +23

    I passed my semester of Calc 1! I did not fully understand everything but I believe I got a strong majority of it & I will be working on some of my weaknesses during break to prepare for Calc 2. For some reason when we got to U-substitution, everyone was confused but it seemed to make sense to me just based off the few example she gave in class and somehow that was all I needed. Anyway, so during last class before our final, she did a little review & answered questions. Someone asked about this sqrt(tanx) and she was like "oh you cant solve this with your current toolset, wait till next semester" and I was like "I can solve it" because I had all this false confidence from having understood the whole U-sub stuff. Well turns out this is a VERY difficult one lol. I guess if you are a student and want to be prepared for integrals, just spend a week studying just THIS one integral and you should be good to go lol.

  • @Shome2049
    @Shome2049 3 роки тому +9

    I just saw you instagram reel, where you give credit question and searched for this integral on UA-cam.
    And I am so glad I found your video 😀!

  • @RyanLucroy
    @RyanLucroy 7 років тому +21

    14:41
    "This is the two, so what should I do?" What a rhyme :O

  • @GustavoMerchan79
    @GustavoMerchan79 7 років тому +153

    Evil integral to place on an exam ... :/

    • @rawn4203
      @rawn4203 4 роки тому +4

      Would have to be like the only question or 1 of 2 questions.

    • @MelonMediaMedia
      @MelonMediaMedia 4 роки тому +15

      I'm from India, and i am practising for this exam, I can assure you, there are more brutal questions.

    • @rahimeozsoy4244
      @rahimeozsoy4244 4 роки тому +1

      @@MelonMediaMedia yeah for Indiana this is ez or normal

    • @sgsnake2x
      @sgsnake2x 3 роки тому +2

      @@MelonMediaMedia im guessing they give you the space because with an A4 blank paper this would quickly turn messy for me as my handwriting is pretty big

    • @Wu-Li
      @Wu-Li 3 роки тому

      This one is an easy problem

  • @DGCubes
    @DGCubes 7 років тому +105

    Oh man, I love this video. I watched the entire thing and enjoyed every second of it! Keep up the good work on your channel. :)

    • @Someone-cr8cj
      @Someone-cr8cj 7 років тому +4

      DGCubes what are YOU doing here??¿

    • @DGCubes
      @DGCubes 7 років тому +1

      What can I say, I like calculus. :P

    • @blackpenredpen
      @blackpenredpen  7 років тому +9

      thank you DGCubes!!

    • @metalmathprofessor1467
      @metalmathprofessor1467 7 років тому

      Me too, I watched the whole thing wondering what was going to happen next! Really a great calculus problem. I'm going to show it to all of my students!

    • @thephysicistcuber175
      @thephysicistcuber175 7 років тому +1

      BOI!

  • @FingertipsOfTheNight
    @FingertipsOfTheNight 4 роки тому +10

    Ok, so in the beginning we have a pretty simple mathematical expression while the result in the end is something horrible. Things tend to evolve naturally from more complex to simpler. I therefore consider it normal to leave this formula unintegrated. Thank you for all your thumbs up ! :D

  • @Johan-st4rv
    @Johan-st4rv 6 років тому +128

    god damn I love math

  • @vidaroni
    @vidaroni 7 років тому +4

    You, my good sir, are turning calculus into art! Awesome video!

  • @weerman44
    @weerman44 7 років тому +165

    15:02 WIZARD! Where can I buy this magic blackpen??

    • @agfd5659
      @agfd5659 7 років тому +3

      WTF! I didn't even notice it before!! How did he do that?!

    • @morganmitchell4017
      @morganmitchell4017 7 років тому +15

      He edited it because he forgot the (-) sign

    • @weerman44
      @weerman44 7 років тому +10

      Haha I understand that
      Just a silly comment ;)

    • @vvsutar6179
      @vvsutar6179 7 років тому

      Morgan Mitchell Johnson

    • @habiburrehman7108
      @habiburrehman7108 6 років тому

      hahaha i also noticed after you comment.....

  • @pasodirect
    @pasodirect 5 років тому

    Ez annyira bonyolult, hogy nincs értelme ennyit számolni, de blackpenredpen igazi zseni !

  • @rajendramisir3530
    @rajendramisir3530 6 років тому +6

    I like this integral and its anti-derivative. I am impressed with your technique of using trigonometric and u-substitution along with algebraic manipulation to arrive at the answer.

  • @AlbertoRamirez-cw6dy
    @AlbertoRamirez-cw6dy 4 роки тому +23

    When you do all of this in the exam and you realize the integral was sqrt(tanx + 1)

  • @AhnafAbdullah
    @AhnafAbdullah 7 років тому +16

    I just differentiated this myself, it starts out ridiculously complex, but it slowly starts to fit in with everything, good luck on doing it! You might need 6 boards to do it, I managed to do it in 1 board, but I had to rub out a lot of the work out I did

    • @ramking7869
      @ramking7869 Рік тому +2

      Differentiating sqrt(tanx) is not hard at all😂

    • @RayTracingX
      @RayTracingX Рік тому +10

      ​@@ramking7869 he is about differentiating the antiderivative of sqrt(tanx)

  • @rogerrb7776
    @rogerrb7776 6 років тому +43

    The most difficulty integral that i ever seen in my entire life! But it was really good xD

    • @blackpenredpen
      @blackpenredpen  6 років тому +38

      Thank you : )
      And..... there's the integral of cbrt(tan(x))

    • @raytheboss4650
      @raytheboss4650 2 роки тому

      @@blackpenredpen imo that’s easier than this

  • @pankajkumarpandey6658
    @pankajkumarpandey6658 3 роки тому +1

    This is lengthy problem. Very few can solve in first time. We can only solve this problem if we practice at home. Your explanation is very nice

  • @anthonyjaas
    @anthonyjaas 6 років тому +2

    Very well work dude, the resolution was easier than I thought, I had problems when using trinomio. You got a like and a new subscriber!

  • @Adam_42_01
    @Adam_42_01 7 років тому +96

    10/10 what a trip

  • @Kino-Imsureq
    @Kino-Imsureq 7 років тому +21

    10:54 defenitely most important part

  • @mahj1
    @mahj1 4 роки тому +1

    I LITERALLY LOVE YOU SO MUCH YOU DESERVE THE WHOLE WORLD

  • @pkiverson
    @pkiverson 7 років тому +2

    Slightly more straightforward (although much longer/messier): Factor x^4 + 1 = (x^2 + sqrt(2)x+1)(x^2 - sqrt(2)x+1), then do partial fractions, complete the square in the denominators and solve. This saves you from having to figure out the trick where you add 1/u^2 and subtract 1/u^2.

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 2 роки тому +1

    Simple presentation of the difficult integral in a nice manner . Thanks .

  • @prollysine
    @prollysine 2 роки тому +1

    Gratulálok, lenyűgöző végig az átváltások sorozata ! Főleg az (U^2 + (1/U)^2) átalakítása !

  • @hmlawdavid2003
    @hmlawdavid2003 4 роки тому +7

    19:05 Try to differentiate THIS to give sqrt(tan x)

  • @morganthem
    @morganthem 7 років тому +27

    So...
    u substitute for fx
    Square u = sqrt (tanx).
    See that 2udu = sec^2(x) dx.
    Squaring u^2 = tanx gives us tan^2(x) = sec^2 (x) -1 = u^4 which we can see as sec^2 (x) = u^4 + 1.
    Thus dx = 2udu/u^4 + 1.
    Plug in original equation to have integral of u*(2u/u^4 + 1)du.
    Multiply top and bottom by 1/u^2 to get complex fraction with sum of squares in denominator.
    Complete the square to get (u + 1/u)^2 - 2, which has derivative of inside equal to 1 - 1/(u)^2.
    Now we want two integrals (why? it is not clear unless you see the tanh^-1 and tan^-1 option coming up), one with 1 - 1/(u)^2 in numerator and other with 1 + 1/(u)^2 in our numerator.
    Because the completed square can have two forms we can have the appropriate denominators to do two more substitutions, this time with t and say w.
    If we do the substitutions correctly we have two integrals, one being of 1/(t^2 - 2), and our other being of 1/(w^2 + 2), both in their respective worlds.
    A formula exists for these forms to be integrated neatly into tanh^-1 and tan^-1 forms. Substitute u back in for t, w, and sqrt (tanx) for u.
    Do this correctly, and then
    Add c and we're done.
    I did this mostly for my own understanding, but I'm fairly sure I didn't skip too much for it to act as a quick summary.

    • @blackpenredpen
      @blackpenredpen  7 років тому +5

      This is great! It's good to work out the problem on your own or along the way.

  • @jilagamnagendrakumar5522
    @jilagamnagendrakumar5522 5 років тому +4

    10:43 that's your brilliancy sir

  • @MagnusSkiptonLLC
    @MagnusSkiptonLLC 7 років тому +1

    I majored in physics in school and always preferred the more pure abstract mathematical parts of it. Watching this video is like taking a mental vacation back into the past. I'm happy that I was able to follow it through to the end on my first viewing :)

  • @disgruntledtoons
    @disgruntledtoons 2 роки тому +1

    Brute force is taking Taylor's expansion of the square root of the tangent, and integrating *that*.

  • @JayOnDaCob
    @JayOnDaCob 2 роки тому +2

    This turned to blackpenredpengreenpenbluepenpurplepen real quick

  • @CasualGraph
    @CasualGraph 7 років тому +2

    Man, so many colors! If you wrote blackpenredpen in that empty space and taken a picture, you'd have a pretty good channel banner.

  • @cruciflux8634
    @cruciflux8634 4 роки тому +2

    Did you guys notice how he changed his pens at 05:23? That was awesome!

  • @EyadAmmari
    @EyadAmmari 5 місяців тому

    Brilliant. So many techniques in one shot.

  • @aashishkarki7867
    @aashishkarki7867 4 роки тому +3

    You made me fall in love with mathematics!❤️ Thank you!

  • @ameyadeshpande6508
    @ameyadeshpande6508 6 місяців тому +1

    I was wondering if you can use Feynman's method at the start to get a u^3 term at the top then do another sub.

  • @rakshithgowda1606
    @rakshithgowda1606 7 років тому +37

    And pretend nothing happened!??
    Great lines

  • @PunmasterSTP
    @PunmasterSTP Рік тому

    I think that the most monumental achievement humanity could ever hope to accomplish would be to find an intuitive understanding of how to go directly from the integrand to the antiderivative in one step...

  • @tomatrix7525
    @tomatrix7525 4 роки тому +1

    Your reslly entertaining and it is very interesting. I love your out of the box thinking to manipulate things to make them work!,,

  • @gregoriousmaths266
    @gregoriousmaths266 4 роки тому +3

    YAY I got this correct
    Imma do a video on how I did it and then compare it with your method.
    This took me ages btw

  • @ngonotseg719
    @ngonotseg719 10 місяців тому

    You are a brilliant Math teacher

  • @aikanikhil24
    @aikanikhil24 3 роки тому +1

    We can solve this in some other way too. We can write sqrt tanx as 1/2 {(sqrt tanx + sqrt cotx)+ (sqrt tanx - sqrt cotx)},and then break these into sin cos expressions,and then subtitute sinx + cosx = t and sinx-cosx = k in the first and second integrals respectively,and then apply the standard integral formula. Anyways love you process too!

  • @DriverMate
    @DriverMate 6 років тому +10

    6:13 out of context is beautiful

  • @Vaibhav-ye6to
    @Vaibhav-ye6to 10 місяців тому

    prolly the first time im actually being happy after a maths answer

  • @factified9892
    @factified9892 2 роки тому

    you are seriously the best maths teacher!

  • @jagirsingh2394
    @jagirsingh2394 3 роки тому +4

    It feels nice that i solved it all by myself for the most part. I have some amazing teachers. Can't thank them enough

  • @ashotdjrbashian9606
    @ashotdjrbashian9606 3 роки тому

    I've seen this video a couple years ago but decided to comment only now. First of all, very nicely done! Without trying to diminish guy's effort and all the excitement of the viewing public, I just wanted to remark that from the view of pure math this is absolutely worthless. Here's why: In all applications (including physics, engineering, and even math) ALL integrals are definite. This integral would be of interest only if integral is from, say 0 to pi/2. In couple of steps now I'll solve the problem of integrability and the value of that integral.
    First, simple substitution v=pi/2-x translates this integral to the integral of \sqroot(cotv) over the same integral. Second, cotv is approximately inverse the of v for small v, so the question is \sqroot(1/v) integrable, and the answer is, of course yes. And we are done!
    If somebody needs the numeric value, just take integral of \sqroot(1/v) from 0 to 0.01 and then calculate the remaining part from 0.01 to pi/2 by whatever method of approximate integration.

  • @andeleo7158
    @andeleo7158 5 років тому +2

    At 9:59, I understand why you add the second fraction in, but doesn't the second fraction need the same denominator as the first to make it equal to the fraction on the line above?

    • @franklinemix8048
      @franklinemix8048 2 роки тому

      Exactly the question i just asked him. That's a violation of fraction rules

    • @franklinemix8048
      @franklinemix8048 2 роки тому

      And to prove it. When those two fractions are added back they can't be added back... So the figure 2 that was split vanished.

  • @TheYoshi463
    @TheYoshi463 7 років тому +4

    sqrt(-1) just love your videos!
    I'm gonna start studying math very soon and your videos really hype me for it^^

    • @blackpenredpen
      @blackpenredpen  7 років тому +2

      THANK YOU!!! I AM VERY HAPPY TO HEAR THIS!!

    • @agfd5659
      @agfd5659 7 років тому +2

      Your pun made me cringe. I hope you're happy! :D

    • @mrocto329
      @mrocto329 3 роки тому

      @@blackpenredpen 4 years later you are still inspiring people. I'm only 14 right now, so don't have any solid plans for uni etc. (other than studying CS as I like programming) but now you got me interested in maths! I've been spending my afternoons just trying to learn maths for the past few weeks, and it's been really fun so far!

  • @Happyclownman
    @Happyclownman 5 років тому

    I passed calc 2 this summer and then I looked at this video because I couldn't figure this out on my own. I heard "Hyperbolic tan" and had a mental breakdown and screamed aloud, "SINCE BLOODY WHEN IS THERE A THING CALLED HYPERBOLIC TANGENT!? THEY'RE JUST MAKING NEW THINGS TO MESS WITH ME!" followed by expletives and crying.

  • @AlejandroRodriguez-lq9mz
    @AlejandroRodriguez-lq9mz 7 років тому +3

    Watching for second time, now i got it! :D Great video!!!

  • @tanmayagarwal4981
    @tanmayagarwal4981 5 років тому +15

    Got to see this question first time on my exam today... carrying weightage of 6marks.. was totally fucked up😑

  • @jonathanvukaj2198
    @jonathanvukaj2198 7 років тому +4

    He didn't reupload this video, we all just have a déjà-vu at the exact same moment.

    • @blackpenredpen
      @blackpenredpen  7 років тому +2

      Sorry for the reupload.
      I actually had a mistake on the integral of 1/(x^2-a^2) in the previous video.
      I will make up to you guys by checking my answer by differentiation! That video will be done soon!

  • @mihirjoshi4378
    @mihirjoshi4378 3 роки тому +1

    the sheer joy with which my man just said: "I also have a purple pen :)"

  • @Jessica-gy4qo
    @Jessica-gy4qo 5 років тому +3

    Thank youuuu❤, greetings from 🇨🇴

  • @ny6u
    @ny6u 4 роки тому

    Every integral tackled for the first time is a journey into the unknown...

  • @javierarmandopalacios786
    @javierarmandopalacios786 2 роки тому +1

    The math is a universal languaje. I'm peruvian, but i can see this video and understand it!🤩

  • @williamwen7190
    @williamwen7190 7 років тому +2

    If you plug in 0.5 for the integral function, then (sqrt(tan 0.5)+sqrt(cot 0.5))/sqrt(2)= 1.4793, but arctanh(1.4793) is undefined. The range of (sqrt(tan x)+sqrt(cot x)/sqrt(2)is alway greater than 1, which makes arctanh(sqrt(tan x)+sqrt(cot x)/sqrt(2)) always undefined for this integral function.

    • @DougCube
      @DougCube 7 років тому

      undefined or complex, but either way I think you are right -- see my comments

    • @williamwen7190
      @williamwen7190 7 років тому

      DougCube But integral from 0.2 to 0.5 of sqrt(tanx) is defined and real from the graph of sqrt(tanx). And all the result of this integral function is complex or undefined.

  • @stapler942
    @stapler942 3 роки тому +1

    About the integral answer with inverse tanh and so on: is this integral defined anywhere as a function? A trip to Desmos seems to indicate that this function has no real values, and plugging in several of the usual trig values yields "undefined" no matter where I look.

  • @cardflopper3307
    @cardflopper3307 3 роки тому

    I couldn't do this integral without u

  • @nasaxd1862
    @nasaxd1862 4 роки тому +2

    Purple pen = turbo

  • @unoriginalusernameno999
    @unoriginalusernameno999 4 роки тому

    Or you can do integration by parts! (i paused at 2:40 to try myself)
    First, use substitution to get integral of sqrt(tan(x)) = integral of u*2udu/u^4+1
    Now do integration by parts to get, integral of sqrt(tan(x)) = u*(integral of 2udu/x^4+1) + integral of integral of 2udu/x^4+1
    Use substitution again (set z=x^2) to get u*arctan(x^2) + integral of arctan(u)
    What's the integral of arctan(u)? it's u*arctan(u) - ln(1+u^2)/2
    So we have integral of sqrt(tan(x)) = 2u*arctan(u) - ln(1 + u^2)/2 and substitute u = sqrt(tan(x)) back to get the answer: 2sqrt(tan(x))arctan(sqrt(tan(x))) - ln(1 + tan(x))/2
    Now I am going back to the video to see how you did it and see if I'm right or not!

  • @ethanbartiromo2888
    @ethanbartiromo2888 5 років тому +6

    Couldn’t you have just done tan inverse with the original u equation after you divided the fraction by u^2, or does it only work with one variable and one constant term?

    • @alejrandom6592
      @alejrandom6592 2 роки тому

      No, cuz then you wouldn't have the +1/u² term nor the -1/u². You need them both to cancel each other.

  • @metalmathprofessor1467
    @metalmathprofessor1467 7 років тому +5

    Riveting :) Bravo on a brilliant solution! I think I could explain that to someone else now!

  • @CrypticalGaming
    @CrypticalGaming 3 роки тому +1

    You could've used another formula/ method for integrating the 1/(t^2 -2)
    just by using :
    integral of 1/(x^2-a^2) = (1/2a)*( ln( |x-a|/|x+a| ) .
    that would have been more easy and intiutive than hyperbolic inverse function.(just saying)
    BTW very nice explanation sir. Great content. You're a wonderful teacher.
    PEACE

  • @vcvartak7111
    @vcvartak7111 3 роки тому

    There is simple method (I Feel) put x=(pi/4-t) dx=-dt and integral become sqrt(1-tan(t))/1+tan(t)) after rationalising numerator we get (1-tan(t)/sqrt(1-tan(sq)t) which is (cos(t)-sin(t))/sqrt(cos(sq)t-sin(sq(t)) now split the integrals. Cos(t)/sqrt(1-2sin(sq)t) other integral is sin(t)/sqrt(2cos(sq)t-1) by sqrt(2) manipulation we get u/sqrt(1-u(sq)) other u/sqrt(u(sq)-1) both forms are familiar having formulae

  • @atharvagarwal6412
    @atharvagarwal6412 5 років тому

    Why are we using hyperbolic trig functions for the integral of 1/(x^2-a^2) when its easier to do it using partial fractions and end up with an answer with log(...) instead..?

  • @KORaju-nd7pt
    @KORaju-nd7pt 2 роки тому

    This integration can be done by other simple methods. You brought this into a difficult way.

  • @alvaroarizacaro3451
    @alvaroarizacaro3451 4 місяці тому

    Hola, gracias por la explicación. Me parece que hay un problema con la solución: El dominio de la función arcotangentehiperbólica es el intervalo abierto (-1,1); por otro lado los corchetes que suceden esta función contienen una función cuyo recorrido o rango es algo así como el intervalo que va de 1.39... hasta infinito. De esta manera la antiderivada no se puede evaluar para ningún valor de x. ¿Es así?... Gracias.
    Hello, thank you for the explanation. I think there is a problem with the solution: the domain of the function hyperbolic arctangent is the open interval (-1,1); on the other hand, the square brackets that follow this function contain a function whose route or range is something like the interval that goes from 1.39... to the infinity. This way the antiderivative cannot be evaluated for any x value. is that so?... Thank you

  • @gagadaddy8713
    @gagadaddy8713 6 років тому

    What a gorgeous way to find the answer! Who is the genius first to find u+1/u and u-1/u pairs for this question? It really drive me crazy for such an integral. Thank BPRP.

  • @bioengboi137
    @bioengboi137 4 роки тому

    Very symmetrical so much so with all those arctans and tan x's you could combine them except for that little h in the inverse hyperbolic tangent it stands for Hell in this integral bc you can't take tanh^-1(n) ||n|| > 1, ~|tan x| + |cot x| w/o screwing up the rest of it unless it's some kind of cubic solution with complex b coefficient ~ 1/3 ln (i)
    Point it seems so close to y = f(x); f^-1(y) = x, x could be 0-2π with no trouble you would run into complex numbers but they cancel themselves out ish

  • @kathysaurio
    @kathysaurio Рік тому

    I always understand your calculus explanations. Thank you.

  • @akshaykishoredesai2017
    @akshaykishoredesai2017 5 років тому +1

    Love your videos sir, you make very complex calculus part easy 😃😃

  • @sauravthegreat
    @sauravthegreat 5 років тому +1

    Fantastic video. Very well explained. Thx

  • @TheMauror22
    @TheMauror22 7 років тому +1

    Finally! Loved the video! Is great! You could do the same integral for the 100k, but now you do it the hard way! (The one with partial fractions and with the factorization of u^4+1, and with the natural log result!)

    • @blackpenredpen
      @blackpenredpen  7 років тому +1

      Mauro Castañeda I would need another white board for that tho. Lol

  • @2008abhik
    @2008abhik 3 роки тому +1

    Quite a popular integral in jee exams in the 80s where u had maths 200 marks ,40 questions carried 5 marks each and attempt all questions

    • @jamescollier3
      @jamescollier3 10 місяців тому

      yeah. I had some sort of flashback

  • @div_07
    @div_07 2 роки тому +2

    The hardest part about this is to remember the +C.

  • @andrewfischer-garbutt2867
    @andrewfischer-garbutt2867 Рік тому

    I did the integral in a slightly different way. I ended up with
    (sqrt(2)/4) * log(abs((1/2 + (sqrt(tan(x)) - sqrt(2)/2).^2) / (1/2 + (sqrt(tan(x)) + sqrt(2)/2).^2))) +
    (sqrt(2)/2) * atan(sqrt(2*tan(x)) + 1) +
    (sqrt(2)/2) * atan(sqrt(2*tan(x)) - 1).
    I also let u = sqrt(tan(x)) but in of multiplying through by 1/u^2 I added and subtracted 2u^2 from the denominator and then factoring the result using difference of squares. Once I had it in a factored form, I used partial fractions.

  • @דיןה-ל6ז
    @דיןה-ל6ז 5 років тому +5

    3:44 You may divide by zero here! Why doesn't it matter?

  • @jaishkhan7442
    @jaishkhan7442 5 років тому +1

    50% math
    50% flexing different colored pens

  • @brucefrizzell4221
    @brucefrizzell4221 5 років тому +3

    As my Cal 3 Professor used to say
    " What could be simpler ."

  • @sharpnova2
    @sharpnova2 2 роки тому +3

    i'm surprised you don't have a video up on how to integrate 1/(x^2 - a^2)
    it's very different from the arctan stuff for 1 / (x^2 + a^2)
    it's a nice problem that requires a clever rewriting of a numerator or (equivalently) p.f.d.

    • @meraldlag4336
      @meraldlag4336 Рік тому

      Am I completely missing the question or can you use partial fractions to integrate it
      Yes I haven’t fully studied integration lol

  • @josebarona271
    @josebarona271 7 років тому +1

    Best birthday gift , thanks

  • @tgx3529
    @tgx3529 3 роки тому

    All depens on interval for x. If this integral is for x in (0.5;1) you can use sqrt(tg)=1/(sqrt (cotgx x) And use substitution y=sqrt(cotgx), than you have short solution

  • @W81Researcher
    @W81Researcher 3 роки тому +4

    Is this Calc 2?

  • @imme3024
    @imme3024 Рік тому

    If we use fractional decomposition to integrate 1/(x^2-a^2) , we'll get
    1/(x^2-a^2) = [1/(2*a)] * [ 1/(x-a) - 1/(x+a) ] and therefore its integral is equal to
    [1/(2*sqrt(2))] * ln( |(t-sqrt(2)) /(t+sqrt(2))| ), by replacing "a" with sqrt(2).
    That's not the same as (1/a) * tanh-1 (x/a)

  • @shantanudash5217
    @shantanudash5217 5 років тому +1

    Very good explanation... Thanks a lot

  • @virajpradhan9248
    @virajpradhan9248 3 роки тому

    Sir I wanted to ask one thing, the integration of type 1/x²+a² should give answer as 1/2a log() in this format then how it got as tan-¹x format ?

  • @billclintonscomputer1408
    @billclintonscomputer1408 4 роки тому +1

    You know shits real when he has to use 5 colors

  • @squeezemyparticiple
    @squeezemyparticiple 3 роки тому

    This is the most chaotic BPRP video I've ever seen

  • @ChrisMMaster0
    @ChrisMMaster0 2 роки тому

    Wow, balckpenredpen is increasing the color expectrum of his calculations 😲