Kis igazítás. Ha már ennyire figyeltél (nagyon helyesen) arra, hogy a parizeres rendszerben nincs súrlódás, akkor ki kellett volna emelni, hogy a kötél sem nyúlik meg, belső súrlódástól is mentes, a csiga tömege pedig elhanyagolható, máskülönben változnak az eredmények.
Vagyis az én megjegyzésemet leszedték. Csak a tök orbitális baromságot hagyták fenn. Azt javasolnám ennek a sok eszementnek, menjenek ionhajtóművel mondjuk Budapesttől Balatonfüredig. De vigyék a barátnőjüket is! Szeretem a szép lányokat meg a buta fiúkat!
Apró hiba: az égéshez három dolog kell: éghető anyag, gyulladási hőmérséklet, és oxigén. Nem kimondottan oxigén, hanem oxidálószer. Pl. fluorral, klórral is működik. Sőt, az alumínium-termit reakció is égés, ám az az oxidálószer a vas-oxid.
Már nagyon vártam ezt a videót. Nagyon jó lett. Nekem kicsit szájbarágós lett helyenként, de annak is örültem, mert így tovább tudtam elmélyülten az élmény hatása alatt lenni, amit a videód adott. Nagyon örülök neki, hogy van még, aki ilyen színvonalas videót képes, akar és gyárt is, és odafigyel a közönségére is. Minden tiszteletem a tiéd!
Érzésem szerint egy emberes Mars utazásnál az ionhajtómű nem lenne opció (de ki kéne számolni). A Mars túl közel van, túl rövid ideig tart még a rakétahajtóműves extraparabolikus pálya is. Gyakorlatilag azzal az erővel / sebességgel, amivel a Föld vonzásából ki lehet szakadni (amire az ion hajtómű igen körülményesen lenne használható), már a Marsig is "át lehet esni", csak jó irányba kell elstartolni. 5 hónapos odaúton nem hiszem, hogy érdemben rövidít az ionhajtómű, ha csak nem 900 darab van belőle. De ez csak megérzés. Viszont az, hogy az SLS booster ma már bő dupláját tudja a 69-es F-1 hajtóműnek (igaz abból 5 darab gyújtott egyszerre), na az nem semmi. Szolid 1600 tonna tolóerő. Az 14 db M62-es dízelmozdony... Fincsi.
Ha már földkörüli pályán vagy, akkor a "jó" hírem az, hogy annak elhagyásához nem erő kell, hanem sebesség. Persze ahhoz, hogy a sebesség vektorodat gyorsan tudd jó irányba forgatni, ahhoz kell a tolóerő is. Gyors számolással, tegyük fel, hogy már haladunk a cél, mondjuk a Mars felé. Ha minden tonnára jut egy, a videóban példának hozott 1/4 Newton tolóerejű ionhajtómű, az négy hónap alatt már kb. 2600 m/s plusz sebességet jelent! Ez erre a szakaszra olyan, mintha a távolság, idézőjelesen 13 millió kilométerrel "rövidült volna" meg. Amikor Mars-Föld közelség van, akkor a két bolygó távolsága összesen kb. 55 millió km. A valós pálya nyilván hosszabb lenne. Vagyis de, az ionhajtómű már egy Mars-utazás esetén is érzékelhetően rövidítené az utat. Nem forradalmilag, de egy-két hónapot lehetne spórolni vele.
@@loserock1 Értem én, csak a Mars utazás (spoiler: még nincs is Mars utazás) természete olyan, hogy ennyi spórlással nem lennénk előrébb, ettől még mindig rendkívüli tömeggel járó rendkívüli apparátust kellene fenntartani a Marson a visszaút megvalósíthatósága érdekében is és ezekre mind ion hajtómű (a nélkülözhetetlen kémiai hajtómű megléte mellett). Erre írtam, hogy sehogy nem lenne opció. A rávezető fejszámolást mindenképpen értékelem még úgy is, hogy nyílvánvalóan nem fedi a valós lehetőségeket, hiszen nem lehet 4 hónapig gyorsítani, fékezni is kell, az 55M km a rádiuszon értendő, az extraparabolikus pálya hossza nem ez és a gyorsulás eredő irányszögét sem a Mars irányú komponens teszi legfőképpen. Ezért - még mindig komoly számítás nélkül, csakis érzésre - tartom, hogy az ion hajtómű a Mars esetén élesben nem lesz opció. A mérhető, százalékban kifejezhető hatás még nem elégséges indok a gyakorlatban. Az egész rendszernek kell működőképesnek lennie. A fejszámolásból egész más látszódik: Az, hogy ha létezne olyan (bármilyen) hajtómű, amivel az emberi szervezet számára optimális 1g gyorsulást fent lehetne tartani, akkor nem is kéne ezt túl sokáig tenni, mert ezzel igen messze lehetne jutni. Akár az egész Naprendszer "könnyen" bejárható lenne. (Miközben az űr csalafinta játéka, hogy szomszédos csillagok még így is nehezen. :) )
@@fehercapa3804 Szerintem sok pontban egyetértünk, de engedelmeddel azért pontosítanom kell a kommentedet! :) - Jó ideje létezik Mars-utazás, hiszen több űreszközt eljuttattunk már a Marsra. Emberes Mars-utazás nem volt még, illetve a Marsról felszállás és visszatérés nem volt még. - 4 hónappal azért számoltam, mert az kb a 8-9 hónapos út fele. Tehát gyorsítasz a felén, lassítasz a másik felén. Egy nagyságrendi becslést akartam adni, ezért számoltam az oda út felével. A valóságban legalább kétszer ennyit nyernél ilyen paraméterekkel, mert a sebesség többleted az megvan a lassulási szakasznál is! :) - Ha egy technika ezen a távon "csak" 20-40%-ot javít, az űrutazási léptékkel már így is nagyon jónak számít! - A becslésben inkább ott csaltam, hogy az egy tonnánként egy 0,25 N-os ionhajtás talán a túl optimista feltételezés. Bár ha úgy veszed, az egy gépkocsi tömegenként lenne egy hajtómű, de azért, ez emberes repülésre optimista. Egy műholdnál viszont talán reális. - Igen, valójában hosszabb az út a Marsra. Másrészt, az ionhajtómű annál jobban megéri, minél hosszabb az út. Persze maga a technikai kihívás meg annál nehezebb. Viszont harmadrészt, teljesen mindegy, hogy a valós pályád milyen alakú, mert ha tudsz folyamatosan gyorsítani tetszőleges irányba, akkor azt fordíthatod teljesen radiális irányba is! Amit kémiai hajtóművel nem tudnál megtenni. Magyarul, ion-hajtóművel nem vagy rákényszerülve a természet-adta parabola pályákra, tudod őket optimalizálni! - A lényegben viszont egyetértek, hogy ezek a kisteljesítményű ion-hajtóművek hasznosak, de nem adják az igazi áttörést. Viszont, a videóban ismertetett technikának vannak már módosított változatai, amik már lehetnek nagyobb teljesítményűek is, csak ezek még fejlesztés alatt állnak. Az egyik módosítás, hogy energia forrásnak mini nukleáris reaktort használunk, és nem napelemeket. Ez főleg azért fontos, mert így már nagyobban lehet gondolkozni és nagyobb mesterséges mágneses tereket lehet létrehozni. A másik változtatás (tudomásom szerint), hogy a nagyobb mágneses térnek hála az ionizált plazmát tovább lehetne hevíteni, mert az erősebb tér azt tovább egyben tudná tartani. Innentől pedig az is megtehető, hogy a hevített ionizált plazmát egyszerűen kivezetjük a fúvókán, mert a részecskék sebessége így már elég nagy, nem szükséges a végén az elektromos gyorsítás. Ez viszont műszakilag már bonyolultabb és sérülékenyebb hajtóművet jelentene! Rizikósabb technika, de nagyobb teljesítménnyel. Ha jól tudom, ezekre a nukleáris/ionizált-plazma hajtóművekre számolják, hogy így már egy hónap körüli idő alatt is működhetne a Mars-utazás. - Régen voltak még elborultabb hajtómű ötletek is, nem tudom, ezek most hogy állnak. Volt olyan ötlet, hogy egy nagy neutron fluxusú reaktort használnának csillagközi utazásra, úgy, hogy a gyors neutronokat egyből kivezetik hajtásként. De például a Dyson Freeman-nek volt egy olyan koncepciója, hogy "nukleáris impulzus meghajtás". Röviden, folyamatosan kis atombombákat robbantanának fel az űrhajó mögött, és ezzel hajtanának. :) Ezt persze nemzetközi egyezmények miatt már a '60-as években lefújták.
@@loserock1 Köszi a bő választ. :) Megkötésnek éreztem, hogy az "utazás" fogalmában benne van, hogy emberek teszik ezt. Az eredeti kommentemben így is írtam, csak a Neked írt válaszból hanyagul ki hanyagul. De természetesen az emberesre gondoltam és itt - akkor most már szögezzük le hogy - számos gyakorlati okból valószínűtlen, hogy valha alkalmaznák az ionos meghajtást (a jelenlegi formájában). Azt nem is tudom hirtelen, hogy az elmúlt mondjuk 20 évből a Mars célpontú missziók bármelyikénél használtak-e ion hajtóművet... Össz-idő értelemben jó volt a 4 hónapos becslésed. (Sőt minden értelemben jó és értelmes volt a nagyságrendi kalkuláció.) Én csak azt jegyeztem meg, hogy a gyakorlatban nem lehetne ilyen hatásfokkal "kiszedni" belőle az eredményt, mert a pályagörbét függfényként felfogva deriválttal kellene megadni a számítást és az kisebb "nyereséget" eredményezne az az érzésem. Ez igaz a gyorsításra és a fékezésre egyaránt (mindegy, hogy féllel vagy egésszel számolsz). És még a műszaki akadályok ez után!... A nukleáris pulzo-reaktor mai napig felszínen lévő gondolatkísérlet, működne is. Inkább ott bukik el, hogy elég kellemetlenek a földi hajtóműtesztek, no meg még a rendkívül megértő és liberális Egyesült Államok katonai vezetése sem örülne annak, ha az elérhető hasadóanyagból az Enceladus felfedezésre menő rakétát akarna építeni a NASA, ahelyett, hogy azt ballisztikus támadórakétákba töltenék. :) Amíg nem tudunk nagyságrenddel nagyobb energiafelszabadulással járó kölcsönhatást (pl. fúzió) űrben mozgatható járműbe szerelni, addig a Naprendszer (emberes) bejárásának képe csak álom marad. És amíg a gravitáció titkára fény nem derül és a Relativitás Elméletben megbújó kiskapukat (amik amúgy nem biztos, hogy léteznek a valóságban - ez fontos!) nem tudjuk kiaknázni, addig a csillagközi (emberes) utazás a Spektrum 50 perces csillagászati riportfilmjeinek témája marad. Mi meg szépen itt maradunk esetleg lesznek emberek kisebb kolóniákban a Marson, akik egyrészt nehéz körülmények között csomó ártalommal megáldva élnek, másrészt soha nem tudnak haza jönni a Földre.
Ez egy nagyon komoly, tömör, rengeteg fontos dolgot teljesen érthetően elmagyarázó videó lett. Ott tartunk, hogy magamban már nem téged mérlek a Discovery műsoraihoz, hanem jó ideje őket mérem hozzád, és az összehasonlítás most már masszívan téged hoz ki győztesként. Egy "amatőr", aki a témakör legprofibb tartalomgyártója lett, a profikat is lekörözve.
Szia! Nem rég újranéztem az összes részt, és még a csatornatagságot is bevállaltam, hogy a tagoknak szóló részeket is megleshessem. Ez a videód is remek. Egy javaslatom lenne: jelenleg csak két lejátszáslista van (Űrkutatás magyarul és Nemzetközi űrhírek), viszont szerintem lehetne tematika alapján több lista is. Pl. az űrkutatás történetéről szóló részek lehetnének egy csokorban; a Naprendszer égitesteiről szóló részek is lehetnének együtt; aztán a Halál az űrben minisorozat; a Földönkívüliek-ről szóló részek, stb... Hasznos lenne, ha pl. a Naprendszer égitesteit szeretném egymás után úgy végignézni, hogy ne kelljen átlépkednem a tematika szerint eltérő részeket. További jó munkát, kitartást kívánok Neked, hogy még sokáig élvezhessük az Űrkutatás magyarul csatornádat!
Szia! Szuper lett a videó! Azt esetleg tudod, hogy miért nem csinálnak nagyobb és erősebb ionhajtóművet? A paraméterek növelésével nem lesz jobb a teljesítmény?
Jelenleg ez a max, de természetesen folyamatosan fejlesztik a technológiát, de nem szabad elfelejteni, hogy itt másodpercenként ezred grammokat használunk fel, szemben a másodpercenkénti több tonna üzemanyagal. Persze, ha egy járműre felrakunk 10-et, azzal máris megtízszereztük a teljesítményt, persze ehhez tízszer annyi elektromos áramra is szükség lesz!
@@urkutatasmagyarul ...a video azon rèszèn amikor a versenyt magyaráztad, felmerült bennem ( de lehet más is gondolt rá), hogy első ütemben egy hagyományosan működő hajtóművel felgyorsítjuk az adott ezközt ( űrhajót ( a marsra) , szondát) s mikor az megtette a gyors gyorsítást ami tőle tellik, majd utánna kapcsoljuk csak be az ion hajtóműveket, azzal hogy a kiègett hagyományos üzemanyag tartályokat leválasztjuk ( mert ugye a célnál lassìtani kell az összes tömeget ), így elméletileg jóval gyorsabban is célba èrhetnènk mint magában csak ionhajtóműves rendszerrel. Szerinted jól gondolom, vagy ez csak egy tèves gondolatmenet így késő este fél 12 körül. 😊
@@attilaperlaki2834 Teljesen jól látod, ma is így használjál, hiszen ionmeghajtással még a bolygó légkörét sem lehet elhagyni. Utána viszont remek hajtóerő!
@@attilaperlaki2834 Pont ezt akartam leírni :), vagyis majdnem. Annyiban változtatnám, hogy az űrből indításnál egy cél felé a kémiaival végezném a gyors gyorsítást, de annyi fuelt hagynék benne, hogy a gyors lassításra is elég legyen, mivel rengeteg időt lehetne nyerni, ha nem ionnal kellene lassítaunk, hiszen akkor időben már jóval a cél előtt "ionfékezni" kéne. Az utazás időben értett nagy része alatt meg lehetne az ionnal gyorsítani. (picit más) - Nekem az nem akar összeállni, hogy ha már az űrből tudnánk indítani (másik űrhajó vinne fel fuelt) teljesen feltöltött kémiai rakétát, akkor azzal elvileg kevés fuellal óriási sebességet lehet elérni, aztán azonnal leállítani, ha már megvan a kellő lendület, sebesség, irány. Tehát, ahogy én mint laikus látom, relatív kevés fuel szükséges gyors sebesség eléréséhez és az onnan való lassításhoz is. Ezért is fura (de biztos csak nekem), hogy ilyen küldetésről miért nem hallottam még. Mondjuk pl egy ilyen "trükkös" tankolós verzióval, űrből indítva teli tartályokkal miért is nem megyünk holdraszállni?! - Jó, biztos a költségek is másabbak így, meg van-e értelme holdraszállni, meg talán az lehet még, hogy ha méretesebb égitestek közelében haladunk el, akkor újra és újra be kellene indítani a kémiai hajtóműveket a gravitációs hatásuk ellensúlyozása érdekében. - Lehet, hogy a laikus az egy erősen hízelgő jelző rám, de nekem akkor is fura, hogy ilyen nagy fokú indításszám, műholdflevitel, űrtevékenység stb mellett senki nem akar emberrel a holdra menni?! Ha akkor presztízs volt, most miért ne lenne az, még ha nem is akkora persze, de mégis?!
@@Fenevad23 A holdraszállásnak a hatvanas években világpolitikai jelentősége volt, mégpedig azt bizonyították vele, hogy a kapitalista rendszer fejlődőképesebb, magasabb rendű, mint az ellenpólus. A szovjet típusú rendszer számára ez egyértelmű vereséget jelentett, amit később sem tudott teljesen kiheverni. Ma már ekkora politikai jelentősége egy "űrsikernek" nincs. Bár, ha Kína előbb küldene embereket a Marsra, mint az USA, az kissé elgondolkodtató lenne.
Tetszett a videó és nagyon érdekes. A videó 16:00 percéhez tartozik: a Dawn, Dart és talán a jövőbeli Lunar Gateway űrállomás is ionhajtóművet használ.
Annak idején a lóvasút volt nagy szenzáció, most pedig a parézeres rakéta. Ide jutottunk. De azért tetszett a videó, sokmindent megértettem belőle. Köszönöm!
Szia ! Én is fel lélegeztem, hogy végre az ember kifejlesztette az ION hajtóművet ! És szeretném meg kérdezni, hogy hány kg-m Jódot kellene magával vinni az ION hajtású rakétának ahhoz, hogy elérje a rakéta a Marsot ?
8:56 A pozitív atommagot mozgatja pont a pozitív töltéssel rendelkező rács felé ahelyett, hogy a negatív töltésű katód felé venné az irányt? 10:00 A másik elektron ágyú honnan kapja a folyamatos elektron utánpótlást?
szia nagyon informatív volt, egy dologról nem volt csak benne szó, hogy milyen energiaforrás biztosítja az ionik gyursítására szolgáló elektrosztatikus tér generálását? köszi
Te adtad meg a végső lökést egy YT elofizeteshez :D Valószínűleg kisebbségben vagyok vele, de inkább fizetek mint reklámokat nézzek, pláne percenként. Pedig nagyon jók a videók. Havi elofizetest is fizetnék (1-2száz ft max, ha azt nézzük, hogy egy nagy szerkesztőség által készített újság havi díjai hol mozognak). Azért csak így tovább!
Egy kérdés: Gyakori vád az űrkutatással szemben a rakáték környezetre gyakorolt hatása, namost ilyenkor mindig eszembe jut a hidrogén-oxigén keverék. Ha ennek megvan az az előnye, hogy környezetkímélő, akkor mi az oka annak, hogy a kerozinos megoldásokat még használják, főleg az olyan, nem legacy rendszereknél, mint a SpaceX rakétáinál?
Ami a környezet szennyezést illeti: 1. A hidrogén előállítása rengeteg energiát igényel, jelenleg legolcsóbb módja vegyi eljárások amik szintén környezet szennyezőek (tehát nem a sokak által ismert módon, a víz elektrolizissével állítják elő) 2. A vízpára is üvegház hatású (ha éjszaka derült az ég, a hajnal sokkal hidegebb mintha be lenen borulva), csak nem szoktuk annak tekinteni mert természetes módon fordul elő, illetve a maximális mértéke korlátozott (páratartalom), és a többlet eső formájában leesik. Viszont ez a körforgás leginkább az alsó légrétegekre igaz. A magasabb légrétegekben sokkal ritkább a víz jelenléte, és onnan a többlet víz sokkal lassabban esik vissza a körforgásba. Tehát hidrogénes hajtóművek esetén a keletkezett vízpára szintén hagy üvegház hatású gázt maga után, ami egy bizonyos idő után visszakerül a víz körforgásba Ami a hidrogént mint üzemanyagot illeti két hatalmas hátránya van: 1. térfogat. Sokkal ritkább még csepfolyós formában is mint a többi üzemanyag. Így sokkal nagyobb tartályt igényel mint a többi üzem anyag, ami többlet súly, nagyobb légellenállás. 2. nagyon hideg. A csepfolyós hidrogén -250 foknál is hidegebb. Amire lehűteni a hidrogént rengeteg energia, azon tartani komoly hőszigetelést igényel ami töblet súlyt jelent a rakétán. Nem csak a külső felület felé kell szigetelni, hanem az oxigén tartály felé is, mert olyan hideg hogy a csepfolyós oxigént megfagyasztja, eldugítva az oxigén csöveket. A térfogat problémák miatt a hydrolox meghajtást leginkább a felső fokozatoknál szokták használni, ott hatékonyabb mint az RP1 (kerozin) meghajtás. Pl a Saturn V rakéták második és harmadik fokozatai hidrogént használtak, míg az also RP1et. A SpaceX nem akarta bonyolítani a Falcon9-et azzal hogy a felső rész hydrolox meghajtásű legyen. Ahhoz új rakéta motort kellett volna tervezni, a földön is külön kezelni hozzá az ellátást indítás előtt, stb. Egyszerűbb volt az alsó fokozaton használt motrot kicsit módosítani (gáz turbinával történő rotáció irányítás) és nagyobb tölcsért rakni rá
@@vhatuma Na és mi van akkor, ha a hidrogént közvetlenül a világűrben, a hajón állítanák elő hidrolízissel? Feltételezve egy nagy víztartályt? Ott pl. a hűtés is megoldott, mivel eleve egy giga frigóban vannak.:)
@@tiborzolnai5367 "a hűtés is megoldott" Sajnos nem így van. A világűrben az üzemanyag hűtésével is kell foglalkozni. Az igaz hogy a világűr hideg, viszont nagyon ritka, szinte teljes vákum. Ezért nem vesz fel sok hőenergiát az űrben levő dolgokról. Hétköznapi példával élve: Amikor köd van és +2fok, akkor nagyon fázunk, ha -2 és száraz az idő, az egész kellemes tud lenni. Hiába van ködös időben melegebb, a párás levegő sokkal gyorsabban veszi fel a hőenergiát mint a száraz levegő. +18-20 fokos vízben úszva szintén jobban fázunk mint mondjuk +10 fokos levegőn. A világűr olyan gyengén veszi át a hőmérsékletet hogy nem is számolnak vele az űrhajósok. Ahhoz hogy hűtsék az űrhajót/űrállomásokat a hőt infravörös fényként távolítják el (minden meleg test bocsájt ki infravörös sugarat a hőmérséklet függvényében, így működnek a hőkamerák). Minél hidegebb valami annál kevésbé sugározza ki a hőt infravörös fényként. A lassú hülés még nem is lenne olyan gond, viszont ha nem vagyunk pl a Föld árnyékában a nap sugarak felmelegítik az űrben levő eszközöket. A SpaceX egyik nagy kihívása lesz a Starship működésében hogy megoldják hogy a folyékony metán és oxigén ne párologjon el útközben a Mars fele. A hidrogén hidegen tartása még nehezebb feleadat, vízet elektrolizálni, és azt lehűteni meg szinte lehetetlen kihívás az űrben. Rengeteg energia, sok négyzetmétet plusz napelem és rengeteg idő. Akkor már marad az ion meghajtók, amik hatékonyabbak / tömeg takarékosabbak is.
Egy kis pontositas. 3:20 korul. (bocs!) Nem feltetlen kell szikra a begyujtashoz. A hipergol anyagoknal nincs erre szukseg eleg vegyiteni a kettot, es a robbanas azonnal bekovetkezik. Az Apollok eseteben a muszaki egyseg volt ilyen rendszeru. A ket alkoto: hidrazin, es dinitrogen-tetroxid. Ezt ma is kevelik mert a nagy molekula meretenek koszonhetoen sokaig lehet tarolni, ellentetben a ketatomos hidrogennel. egyebkent jo volt az eloadas.
Szia! Lehetne egy videó a különböző cégek, űrhivatalok rakétahajtóműveiről, eddig a különböző (számomra kínai) ábrák miatt a SpaceX Raptorját( ha jól tudom, még nem repült) tartottam a legerősebbnek. De jelenleg úgy érzem, folyamatosan változik a helyzet.
Gergő, 1:28-tól olyan jól sikerült a 🎈-s hajtóműved 👏🏼, és annak prezentálása, hogy máris azt látom, ezt a NASA nagyon elcseszte, s bizony nagyon eltévedt a kémiai hajtóművekkel! 😉😆 Az ➕➖ ⎎⇢ meg egyszerűen kanfasztikus, egy igazán elmés találmány! Csak azt nem értettem, hogy miért nem tesznek a hajtómű külső részére 180 fokkal átellenben is egy elektronszóró fejet a hatékonyság javítása érdekében, illetve talán 90 fokonként kéne elhelyezni egyet, egyet. Köszönöm a sok értékes információt és modellt, ez is nagyon jó óra volt, élveztem! 😊
Szuper video😉 Tervezel videot csinalni a proxima centauri-rol is? Lattam rola egy dokufilmet, itt fent van youtuben, de az a tipikus dokufilm amiben 50 percet beszelnek 5 perc valodi tartalomrol. Te biztos ezerszer jobb videot tudnal rola csinalni tobb informacioval.
nagyon jó volt! Már várom a pillanatot amikor valaki kitalálja,hogy hajtóművekkel gyűjtsünk össze egycsomóba bolygókat,amikről van még valami kizsákmányolni való,hozzuk ide őket ,ne kelljen messzire utazni hozzájuk😆😂
A kérdés csak az, hogy a világűrben ha vákum van, az az kb. semmi, akkor mitől rúgja el magát bármilyen tolóerő is? Mert a vízben a jet hajtás a víztől rúgja, vagy tolja el magát, a levegőben a hajtóerők a levegőtől, de az ürben mitől? Ertelmes és logikus válaszokat előre is köszönöm!
Nem kell közegtől ellökni magunkat. Ha egy görgős széken ellöksz magadtól egy medicin labdárt, akkor elmozdulsz, akkor is, ha ezt vákuumban teszed. A közeg nem számít. Egyébként a felsorolt hajtóművek is működnének az űrben, ha lenne hozzájuk megfelelő befolyó anyagy.
@@gabornagy7943 Ez sem teljesen igaz. Valóban mikróhullámmal ionizálja gázt plazma állapotba majd mágneses térrel gyorsitja fel azt a kiván sebességre. A neve magyarra forditva: Változtatható impulzusűrűségű mágnesplazma rakéta. Mivel a tólóerőt a plazmaállapotba hevitett gáz adja.
a következő lehetséges lépés az lehet hogy az ionhajtómű az anyagát az űrben elérhető anyagból vételezze, ergo ha nem kell magával vinnie bármekkora utazások lehetségesek lesznek. Illetve hallottam már hogy a fotonoknak is van tolóereje ami egy vitorlaszerű szerkezettel fogható fel.
Tegyük fel a Saturn V rakéta és egy ionhajtóműves rakéta a tengerszinttől számítva 100 kilóméteres magasságbol egyszerre elindulnak tegyük fel "nullás sebességről". Mennyi időbe telne mire az ionhajtóműves rakéta eléri a Saturn V rakéta végsebességét? (A példa kedvéért mondjuk azt hogy ugyanakkora tömegű a két rakéta)
9:21 lehet furcsa kérdés, de ha belesétálnánk egy ilyen csóvába mi történne? Én azt tudom elképzelni hogy olyan lenne mint egy nagyon erős sugárdózis. Abból gondolom hogy ilyen nagy sebességgel áthaladnak a testeden a részecskék az gyakorlatilag olyan mintha sugárzást kapnál. Persze mivel ez nem sugárzás így utána nem sugározna a ruhád/te magad. Aztán lehet hogy nincs igazam és értelmetlen amit mondok.
Ez egy rendkívül híg atomfelhő. Ha a légkörben kapcsoljuk be, már a levegő részecskéi lelassítanák, így nem lenne hatással ránk. Az űrben pedig, hát nagyobb bajunk is lenne, ha űrruha nélkül 'sétálgatnánk' előtte.
Minden oxidációs klasszikus rakéta ionokat állít elő a plazma még több tolóerőt adna ezek szerint ha a hőmérséklet függvénye a különböző halmazállapotok
Space X Marsi starshipjére 11 vagy 12 Ion hajtómü kéne hogy legyen hatása a meghajtásban?ion hajtómü méretét megnöveljük akkora legyen starship akkor az a 1db ion hajtómü felérne 11-12ion hajtómüvel?
Nem volt szó róla, hogy honnan veszik az energiát az ionok gyorsítására? Lehet ahoz kell egy nagy tartály tele kerozinnal és oxigénnel? :) Vagy üzemanyagcella, amihez meg hidrogén kell és szintén oxigén? Esetleg széntüzelésű erőmű? :p
@@urkutatasmagyarul Szeretem a videóidat, de ez kissé demagóg (népámító) lett. A legközelebbi csillagig nem is látunk el rendesen, így nem is tudnánk oda célirányosan űreszközt irányítani. Az ion hajtómű gyenge tolóerőre képes ez miatt nagyon sokáig tartna a gyorsítás. Ugyan ilyen sokáig tartana a lassítás is, de csak akkor, ha van elegendő elektromos teljesítmény annak üzemeltetésére. A legközelebbi csillag távolságban/időben oly messze van, hogy működőképesen tartani űreszközt lehetetlen volna. A belső naprendszerben még csak-csak, de a külső naprendszeben és azon túl, már nincs annyi napenergia ami működtetni tudná a hajtóművet. A csillaközi térben meg még ennyi sem. Az eltelt idő miatt, mire fékezni kellene a gyatra teljesítényű hajtóművel, már nem lesz működőképes az űreszköz. Mire a legközelebbi csillagnál, beérne olyan távolságba ahol a napelemek már termelnének némi energiát, a toló erő semmire nem lenne elegendő, a célzott lassításhoz pláne nem. egyébként kérdés, hogy 10-20 ezer év múltán működőképes maradna-e ez elektronikai rendszer, abszolút nullafokon? A realitás talaján állva szerintem ki lehet jelenteni, hogy az emberiség a Naprendszerbe van zárva és a Földre van kötve. Nem arról van szó, hogy két maréknyi embert ne tudnánk pl. a Marsra küldeni, hanem arról, hogy azok ott több ezres, több generációs popuációt nem tudnának létrehozni. Az emberi fantázia határtalan, ezért is hisznek páran az istenekben, vagy abban , hogy térhajlítással felfoghatatlan méretű tárgyakat, benne életben lévő embereket lehet eljuttatni galaxisokon át bárhová. És most hullajtsunk el pár könnyet azokért is, akik azt hiszik, hogy ez valósággá válhat. :) ua-cam.com/video/XEQ7oy03c0o/v-deo.html
köszi tök jók az animációk tetszett, viszont lenne egy kérdésem is ha szabad mihez képest hat a tolóerő hiszen az űrben nincs semmi vagyis légüres térben vagyunk ott hogy fejti ki a hatást mihez képest tolja el magát a rakéta köszönöm megtisztelő válaszát
Impulzus megmaradásának törvénye miatt működik. Ezt szokás rakétaelvként is emlegetni. Gondolj egy puskával való lövésre: a golyó nagy sebességgel elszáll az elsütés pillanatában, ugyanakkor a fegyvert tartó embert az ellenkező irányba meg is löki a puska (ennek a veszélyes lökő/ütő hatásnak kivédése miatt kell a puskát erősen a vállhoz támasztani...)
Szerencsesebb lett volna nem úgy fogalmazni, hogy a molekulákat "összepréseli" a lufi fala (mint pl. egy szivacsot), hanem közelebb nyomja egymáshoz. A mollekulák térfogata/alakja változatlan marad.
A neutront meg töltöttség híján nehezebb kilőni, bár lehet hogy valamilyen maghasadás során keletkező felelsleges neutronokat ki lehetne lőni, ha amúgy is Mini atomi erőművet használnak néha az űrben
Amire te gondolsz, az a gyorsulás. Igen, lesz, de oly' csekély, hogy az űrhajósok észre sem vennék, ugyanúgy lebegnének az űrhajó/űrállomás belsejében.
Lenne egy kérdésem ! Ha ilyen lassan haladna az ionos járművünk akkor hogy szökik ki egy bolygó gravitációs vonzásábol? Értem hogy folyamatosan menni fog de egyre nagyobb lesz a vonzás is nem?
Úgy értettem hogy a földnek is van egy bizonyos szökési sebessége amivel már meghaladjuk a gravitációs vonzást és ha egy nagyobb bojgo mellett megyünk el akkor Mizu? 🤔
@@urkutatasmagyarul hát van a gravitációs erő ami húz magához és ahoz kell a sebesség és van egy tömeg akkor kell egy bizonyos sebesség a gravitációs vonzás ellen
Tudom alapvető dolog, de végre megèrtettem az atom elektron proton neutron ion dolgok igazi mibenlètèt és az okokat, hogy miért jó, hogy ennyi mindent tudunk róluk.
09:00 ** a két rács közt 30km/secre gyorsulnak, ez több mint 100.000km/h** felénk az négy sec alatt megvan ha nem tévedek 4*30km az 120km az 3* körbe a bolygó az egyenlítőn :)
@@urkutatasmagyarul Ki lehetne szàmitani. Megvan hogy mikor indult el és hogy mekkora egy mai legmodernebb ionhajtomu teljesitménye. Csak gondolatkisérletnek....
De hogy rakattunk volna rá ilyet 45 évvel ezelőtt? És mennyi üzemanyaggal számolnánk? Folyamatos használat mellett, vagy csak az utolsó bolygó melleti elhaladás után kapcsoltuk volna be?
Lenne egy kérdésem. 🤔 Az emberi szervezet vajon képes lenne túlélni azt a sebességet, amit az ion... Izé! Ilyen hajtóművel (vekkel) el lehet érni? Bocs, a szóviccért! 😉
Nem lenne rossz egy videó különböző csillagközi technológiák összehasonlításáról sem: ionhajtómű, nukleáris impulzusmeghajtás, fúziós rakéta, napvitorla stb Lehet az atommagban lévő energiából sokkal többet lehetne kinyerni mint az elektron héjákon lévő kémia energiából a tömeg/kibocsátott energia arányában.
Az a baj, hogy az űrben akármennyi elektromos áramunk lehet, ahhoz, hogy megmozduljunk, muszáj valamit ellökni magunktól. Tömeggel rendelkező anyagot.
3 роки тому
@@urkutatasmagyarul Ez az állítás bizonyítottan nem igaz. Csak még vagy senki nem ismerte fel ezt a jelenséget, vagy direkt elhalgatják. Mivel a konteókban nem hiszek, ezért csak az első eshetőségre tudok gondolni. Pedig olyan egyszerű.
@@urkutatasmagyarul Nem kell tömeget elökni, ez nem igaz. Minden űrbe juttatott eszközön amit bármijen modon navigálnak vagy pozicionálnak, használják ezt az elvet. Már a V1 en is használták, ha jól emlékszem. Súgok egy kicsit: giroszkóp. (Csak egy picit módosítani kell, de az elv ugyan az.) A meghajtást a rakétaelvnél egyébként a gyorsítás adja, és nem a tömeg vesztés. A rakétamotor lényegében egy lineális részecske gyorsító. És ez igaz az elektromos és a kémiai elvüre is. El tudod képzelni, hogy mit jelentene egy olyan üreszköz aminek nem kell a gyorsításához hajtóanyagot felhasználnia, csak energiát? Én sejtem hogy hogyan müködhet egy ilyen. Lényegében minden teknológia létezik hozzá márt ma is. Ipari szinten használják mindet. Csak át kellene ültetni a vákum környezetére és más módon felhasználni őket.
@ A giroszkóp egy nagy fordulatszámú tárcsa, amely ellene dolgozik a tengelyét elfordítani igyekvő erőnek. Használhatják iránystabilizálásra, valamint külső segéderőtől mentes irányváltoztatásra. Ez viszont, lásd giroszkóp, tudomásom szerint gyorsításra nem használható. Üdv.
Ezzel kapcsolatban eszembe jutott egy elmés szerkezet, melynek a neve diffúziós ködkamra. Idehaza tudtommal kettő ilyen szerkezet van, az egyiket volt szerencsem saját szememmel látni. Detektálható vele a sugárzás( amerícium-241) de ami minket ugyebár jobban érdekel, a kozmikus sugárzás is!
Van e ismert elvi akadálya, hogy megfelelő áramforrás birtokában lényegesen nagyobb tolóerejű ionhajtóműveket építsünk? Mondjuk ami már nem grammokban, hanem kg mérhető tolóerőt biztosít? Nagyon dolgoznak a kompakt atomerőműveken, amikkel a Holdon, vagy a Marson képesek árammal ellátni a bázisokat. Nem nehéz kilegózni, hogy ezek működnének egy pályára állított űrhajón is. Így a megszokott napelemekből nyerhető néhány ezer watt energia helyett már kilovattok álnának rendelkezésre. Egy ilyen nukleáris energiaforrás évtizeden keresztül képes árammal ellátni akár egy vagy több ionhajtóművet is. Vagyis akár mély-űri küldetésekre is használhatóak lennének, és nem évszázados fejlesztés, hanem maximum 5 -10 éven belül. Ha nem is emberes küldetésekre, de előre tolt állások létrehozására fel lehetne használni. Az Európára, vagy az Enceladus-ra szánt küldetéseket drasztikusan felgyorsíthatná pl. Ráadásul a nukleáris erőmű alkalmassá tehetné ezeket a szondákat a holdak jégpáncéljának átolvasztására is.
Ezek valóban jó ötletek, viszont a nemzetközi egyezmények korlátozzák a plutónium (és más radioaktív anyagok) előkészítését. Erről már évek óta tárgyal a NASA a döntéshozókkal, hogy űrkutatási célokra lehessen használni ezeket az anyagokat, csak mindenki attól fél, hogy akkor mindenre azt mondanák, hogy űrkutatási céllal készül.
@@VRGJozsef Fúziós reaktor nem lesz, hanem már van. Ráadásul nem is egy hanem több is. Rengeteg nemzet invesztált a fúziós reaktorokba, amik nem csak elméletben hanem gyakorlatban is működnek. Az európai ITER projektben ráadásul rengeteg Magyar szakember is dolgozik. Az Európai 500MW-os ITER Tokamak típusú erőművőn kívül ott van a 150MW-os DEMO ami szintén Európai kézben van és szintén egy Tokamak. Kínában működik egy 50MW-os Tokamak rendszeren alapúló reaktor, az USA pedig (az ITER-en kívül) dolgozik saját rendszeren és tovább akarja fejleszteni a Tokamak tórusz reaktor rendszert, egy hatékonyabbra. Szóval fúziós reaktorok vannak, működnek. Ajánlom az ITER honlapját, ott nyomon lehet követni szinte mindent. Ami miatt nem elterjedt, az a mérete, a működtetése, és a bonyolultsága. Ellenben biztonságosabbak. A hagyományos atomreaktornál, nem kell semmit se csinálni, csak kiemelni a reaktor rudakat, és már melegszik is a víz. A fúziós reaktornál elsőnek plazma állapotba kell hozni a két anyagot amit fúziónálni szeretnénk, általában deutériumot és triciumot. A reaktor MW-t jelőlése nem a kinyert energiát jelenti, hanem hogy mennyi energia megy be a "fűtő" rendszerbe. Tehát egy 50MW-os reaktor annyit jelent, hogy 50MW energiát tolnak bele, hogy a fúziót beindítsák. Több beleölt energia = több plazma = nagyobb fúzió = több kinyert hő = nagyobb energia megtérülés. Sajnos az 50MW-os rendszer túl kicsi, és túl kevés energiát termel, ezért épül a 150MW-os és az 500MW-os nagyobbak. Ajánlom az ITER weboldalát, ott rengeteg anyagot biztosítanak az érdeklődőknek.
3 роки тому+2
Egyelőre elképzelhetetlen "nagy" teljesítményű elektomos áram termelésére alkalmas atomreaktór működtetése vákumban. Még nem létezik olyan technológia amivel az ehhez szükséges höt le lehetne adni. Több tiz négyzetkilométeres hőleadó infra radiátórra lenne ehez szükség.
Fénysebességgel nem tudunk utazni. Úgy csak a részecskék valószínűségi hulláma (által továbbított információ/energia) tud. Az talán ("talán"!) lehetséges lesz, hogy információként továbbítsuk magunkat fénysebességgel, de azt én nem hívnám utazásnak, mert az utazásról nem keletkezne élményünk (azt tapasztalnánk, hogy az egyik pillanatban itt, a másikban már ott létezünk).
Itt Skóciában hogyan magyarázzam el az embereknek a fizikát ha nem ismerik a parizert?
Majd mondom nekik haggis-zal. ;)
Kis igazítás. Ha már ennyire figyeltél (nagyon helyesen) arra, hogy a parizeres rendszerben nincs súrlódás, akkor ki kellett volna emelni, hogy a kötél sem nyúlik meg, belső súrlódástól is mentes, a csiga tömege pedig elhanyagolható, máskülönben változnak az eredmények.
Vagyis az én megjegyzésemet leszedték. Csak a tök orbitális baromságot hagyták fenn.
Azt javasolnám ennek a sok eszementnek, menjenek ionhajtóművel mondjuk Budapesttől Balatonfüredig. De vigyék a barátnőjüket is! Szeretem a szép lányokat meg a buta fiúkat!
Nagyon jól elmagyaráztad! Köszönjük! Gyerekek is könnyen megérthetik.
Szerintem tv műsornak is simán elmegy ez a csatorna.
Igen? Az jó. Én még 11 éves vagyok, de nagyon érdekel a téma
Ja aztán majd a sok 12 éves építgeti sorra az ionhqjtóműveket😂😂
Apró hiba: az égéshez három dolog kell: éghető anyag, gyulladási hőmérséklet, és oxigén. Nem kimondottan oxigén, hanem oxidálószer. Pl. fluorral, klórral is működik. Sőt, az alumínium-termit reakció is égés, ám az az oxidálószer a vas-oxid.
De természetesen ez semmit nem von le a videó vagy a csatorna értékéből, élvezettel követjük az összes tartalmat! :)
Köszi a kiegészítést!
Nem néztem vissza, de mintha ez elhangzott volna a videóban.
@@zoltannagy5502 Most visszanéztem, és tényleg elhangzik. A következő mondatban.
A nap is ég.
Már nagyon vártam ezt a videót. Nagyon jó lett. Nekem kicsit szájbarágós lett helyenként, de annak is örültem, mert így tovább tudtam elmélyülten az élmény hatása alatt lenni, amit a videód adott. Nagyon örülök neki, hogy van még, aki ilyen színvonalas videót képes, akar és gyárt is, és odafigyel a közönségére is. Minden tiszteletem a tiéd!
Nagyon koszonjuk az igenyes tartalmakat.
Ebéd mellé a legjobb az új epizód.
Érzésem szerint egy emberes Mars utazásnál az ionhajtómű nem lenne opció (de ki kéne számolni). A Mars túl közel van, túl rövid ideig tart még a rakétahajtóműves extraparabolikus pálya is. Gyakorlatilag azzal az erővel / sebességgel, amivel a Föld vonzásából ki lehet szakadni (amire az ion hajtómű igen körülményesen lenne használható), már a Marsig is "át lehet esni", csak jó irányba kell elstartolni. 5 hónapos odaúton nem hiszem, hogy érdemben rövidít az ionhajtómű, ha csak nem 900 darab van belőle. De ez csak megérzés.
Viszont az, hogy az SLS booster ma már bő dupláját tudja a 69-es F-1 hajtóműnek (igaz abból 5 darab gyújtott egyszerre), na az nem semmi. Szolid 1600 tonna tolóerő. Az 14 db M62-es dízelmozdony... Fincsi.
Ha már földkörüli pályán vagy, akkor a "jó" hírem az, hogy annak elhagyásához nem erő kell, hanem sebesség. Persze ahhoz, hogy a sebesség vektorodat gyorsan tudd jó irányba forgatni, ahhoz kell a tolóerő is. Gyors számolással, tegyük fel, hogy már haladunk a cél, mondjuk a Mars felé. Ha minden tonnára jut egy, a videóban példának hozott 1/4 Newton tolóerejű ionhajtómű, az négy hónap alatt már kb. 2600 m/s plusz sebességet jelent! Ez erre a szakaszra olyan, mintha a távolság, idézőjelesen 13 millió kilométerrel "rövidült volna" meg. Amikor Mars-Föld közelség van, akkor a két bolygó távolsága összesen kb. 55 millió km. A valós pálya nyilván hosszabb lenne. Vagyis de, az ionhajtómű már egy Mars-utazás esetén is érzékelhetően rövidítené az utat. Nem forradalmilag, de egy-két hónapot lehetne spórolni vele.
@@loserock1 Értem én, csak a Mars utazás (spoiler: még nincs is Mars utazás) természete olyan, hogy ennyi spórlással nem lennénk előrébb, ettől még mindig rendkívüli tömeggel járó rendkívüli apparátust kellene fenntartani a Marson a visszaút megvalósíthatósága érdekében is és ezekre mind ion hajtómű (a nélkülözhetetlen kémiai hajtómű megléte mellett). Erre írtam, hogy sehogy nem lenne opció.
A rávezető fejszámolást mindenképpen értékelem még úgy is, hogy nyílvánvalóan nem fedi a valós lehetőségeket, hiszen nem lehet 4 hónapig gyorsítani, fékezni is kell, az 55M km a rádiuszon értendő, az extraparabolikus pálya hossza nem ez és a gyorsulás eredő irányszögét sem a Mars irányú komponens teszi legfőképpen. Ezért - még mindig komoly számítás nélkül, csakis érzésre - tartom, hogy az ion hajtómű a Mars esetén élesben nem lesz opció. A mérhető, százalékban kifejezhető hatás még nem elégséges indok a gyakorlatban. Az egész rendszernek kell működőképesnek lennie.
A fejszámolásból egész más látszódik: Az, hogy ha létezne olyan (bármilyen) hajtómű, amivel az emberi szervezet számára optimális 1g gyorsulást fent lehetne tartani, akkor nem is kéne ezt túl sokáig tenni, mert ezzel igen messze lehetne jutni. Akár az egész Naprendszer "könnyen" bejárható lenne. (Miközben az űr csalafinta játéka, hogy szomszédos csillagok még így is nehezen. :) )
@@fehercapa3804 Szerintem sok pontban egyetértünk, de engedelmeddel azért pontosítanom kell a kommentedet! :)
- Jó ideje létezik Mars-utazás, hiszen több űreszközt eljuttattunk már a Marsra. Emberes Mars-utazás nem volt még, illetve a Marsról felszállás és visszatérés nem volt még.
- 4 hónappal azért számoltam, mert az kb a 8-9 hónapos út fele. Tehát gyorsítasz a felén, lassítasz a másik felén. Egy nagyságrendi becslést akartam adni, ezért számoltam az oda út felével. A valóságban legalább kétszer ennyit nyernél ilyen paraméterekkel, mert a sebesség többleted az megvan a lassulási szakasznál is! :)
- Ha egy technika ezen a távon "csak" 20-40%-ot javít, az űrutazási léptékkel már így is nagyon jónak számít!
- A becslésben inkább ott csaltam, hogy az egy tonnánként egy 0,25 N-os ionhajtás talán a túl optimista feltételezés. Bár ha úgy veszed, az egy gépkocsi tömegenként lenne egy hajtómű, de azért, ez emberes repülésre optimista. Egy műholdnál viszont talán reális.
- Igen, valójában hosszabb az út a Marsra. Másrészt, az ionhajtómű annál jobban megéri, minél hosszabb az út. Persze maga a technikai kihívás meg annál nehezebb. Viszont harmadrészt, teljesen mindegy, hogy a valós pályád milyen alakú, mert ha tudsz folyamatosan gyorsítani tetszőleges irányba, akkor azt fordíthatod teljesen radiális irányba is! Amit kémiai hajtóművel nem tudnál megtenni. Magyarul, ion-hajtóművel nem vagy rákényszerülve a természet-adta parabola pályákra, tudod őket optimalizálni!
- A lényegben viszont egyetértek, hogy ezek a kisteljesítményű ion-hajtóművek hasznosak, de nem adják az igazi áttörést. Viszont, a videóban ismertetett technikának vannak már módosított változatai, amik már lehetnek nagyobb teljesítményűek is, csak ezek még fejlesztés alatt állnak. Az egyik módosítás, hogy energia forrásnak mini nukleáris reaktort használunk, és nem napelemeket. Ez főleg azért fontos, mert így már nagyobban lehet gondolkozni és nagyobb mesterséges mágneses tereket lehet létrehozni. A másik változtatás (tudomásom szerint), hogy a nagyobb mágneses térnek hála az ionizált plazmát tovább lehetne hevíteni, mert az erősebb tér azt tovább egyben tudná tartani. Innentől pedig az is megtehető, hogy a hevített ionizált plazmát egyszerűen kivezetjük a fúvókán, mert a részecskék sebessége így már elég nagy, nem szükséges a végén az elektromos gyorsítás. Ez viszont műszakilag már bonyolultabb és sérülékenyebb hajtóművet jelentene! Rizikósabb technika, de nagyobb teljesítménnyel. Ha jól tudom, ezekre a nukleáris/ionizált-plazma hajtóművekre számolják, hogy így már egy hónap körüli idő alatt is működhetne a Mars-utazás.
- Régen voltak még elborultabb hajtómű ötletek is, nem tudom, ezek most hogy állnak. Volt olyan ötlet, hogy egy nagy neutron fluxusú reaktort használnának csillagközi utazásra, úgy, hogy a gyors neutronokat egyből kivezetik hajtásként. De például a Dyson Freeman-nek volt egy olyan koncepciója, hogy "nukleáris impulzus meghajtás". Röviden, folyamatosan kis atombombákat robbantanának fel az űrhajó mögött, és ezzel hajtanának. :) Ezt persze nemzetközi egyezmények miatt már a '60-as években lefújták.
@@loserock1 Köszi a bő választ. :) Megkötésnek éreztem, hogy az "utazás" fogalmában benne van, hogy emberek teszik ezt. Az eredeti kommentemben így is írtam, csak a Neked írt válaszból hanyagul ki hanyagul. De természetesen az emberesre gondoltam és itt - akkor most már szögezzük le hogy - számos gyakorlati okból valószínűtlen, hogy valha alkalmaznák az ionos meghajtást (a jelenlegi formájában). Azt nem is tudom hirtelen, hogy az elmúlt mondjuk 20 évből a Mars célpontú missziók bármelyikénél használtak-e ion hajtóművet...
Össz-idő értelemben jó volt a 4 hónapos becslésed. (Sőt minden értelemben jó és értelmes volt a nagyságrendi kalkuláció.) Én csak azt jegyeztem meg, hogy a gyakorlatban nem lehetne ilyen hatásfokkal "kiszedni" belőle az eredményt, mert a pályagörbét függfényként felfogva deriválttal kellene megadni a számítást és az kisebb "nyereséget" eredményezne az az érzésem. Ez igaz a gyorsításra és a fékezésre egyaránt (mindegy, hogy féllel vagy egésszel számolsz). És még a műszaki akadályok ez után!...
A nukleáris pulzo-reaktor mai napig felszínen lévő gondolatkísérlet, működne is. Inkább ott bukik el, hogy elég kellemetlenek a földi hajtóműtesztek, no meg még a rendkívül megértő és liberális Egyesült Államok katonai vezetése sem örülne annak, ha az elérhető hasadóanyagból az Enceladus felfedezésre menő rakétát akarna építeni a NASA, ahelyett, hogy azt ballisztikus támadórakétákba töltenék. :)
Amíg nem tudunk nagyságrenddel nagyobb energiafelszabadulással járó kölcsönhatást (pl. fúzió) űrben mozgatható járműbe szerelni, addig a Naprendszer (emberes) bejárásának képe csak álom marad. És amíg a gravitáció titkára fény nem derül és a Relativitás Elméletben megbújó kiskapukat (amik amúgy nem biztos, hogy léteznek a valóságban - ez fontos!) nem tudjuk kiaknázni, addig a csillagközi (emberes) utazás a Spektrum 50 perces csillagászati riportfilmjeinek témája marad. Mi meg szépen itt maradunk esetleg lesznek emberek kisebb kolóniákban a Marson, akik egyrészt nehéz körülmények között csomó ártalommal megáldva élnek, másrészt soha nem tudnak haza jönni a Földre.
Nagyon érthető volt! Szuper a szemléltetes! Profi munka! Köszönjük szépen!
Ez egy nagyon komoly, tömör, rengeteg fontos dolgot teljesen érthetően elmagyarázó videó lett. Ott tartunk, hogy magamban már nem téged mérlek a Discovery műsoraihoz, hanem jó ideje őket mérem hozzád, és az összehasonlítás most már masszívan téged hoz ki győztesként. Egy "amatőr", aki a témakör legprofibb tartalomgyártója lett, a profikat is lekörözve.
Köszi :)
Szia! Nem rég újranéztem az összes részt, és még a csatornatagságot is bevállaltam, hogy a tagoknak szóló részeket is megleshessem. Ez a videód is remek.
Egy javaslatom lenne: jelenleg csak két lejátszáslista van (Űrkutatás magyarul és Nemzetközi űrhírek), viszont szerintem lehetne tematika alapján több lista is. Pl. az űrkutatás történetéről szóló részek lehetnének egy csokorban; a Naprendszer égitesteiről szóló részek is lehetnének együtt; aztán a Halál az űrben minisorozat; a Földönkívüliek-ről szóló részek, stb... Hasznos lenne, ha pl. a Naprendszer égitesteit szeretném egymás után úgy végignézni, hogy ne kelljen átlépkednem a tematika szerint eltérő részeket.
További jó munkát, kitartást kívánok Neked, hogy még sokáig élvezhessük az Űrkutatás magyarul csatornádat!
Üdv a fedélzeten! :)
Nagyon jó ötlet, a napokban meg is csinálom az új lejátszási listákat, köszi!
Megnéztem. Közérthető, alapos szemléletes videó. Simán lehetne ez az Új Delta. ;)
nagyon jók a videóid! tőled tudtam meg mindent az űrkutatásról! remélem lesz live az Artemis program kilövésénél!
Szia! Szuper lett a videó! Azt esetleg tudod, hogy miért nem csinálnak nagyobb és erősebb ionhajtóművet? A paraméterek növelésével nem lesz jobb a teljesítmény?
Jelenleg ez a max, de természetesen folyamatosan fejlesztik a technológiát, de nem szabad elfelejteni, hogy itt másodpercenként ezred grammokat használunk fel, szemben a másodpercenkénti több tonna üzemanyagal.
Persze, ha egy járműre felrakunk 10-et, azzal máris megtízszereztük a teljesítményt, persze ehhez tízszer annyi elektromos áramra is szükség lesz!
@@urkutatasmagyarul ...a video azon rèszèn amikor a versenyt magyaráztad, felmerült bennem ( de lehet más is gondolt rá), hogy első ütemben egy hagyományosan működő hajtóművel felgyorsítjuk az adott ezközt ( űrhajót ( a marsra) , szondát) s mikor az megtette a gyors gyorsítást ami tőle tellik, majd utánna kapcsoljuk csak be az ion hajtóműveket, azzal hogy a kiègett hagyományos üzemanyag tartályokat leválasztjuk ( mert ugye a célnál lassìtani kell az összes tömeget ), így elméletileg jóval gyorsabban is célba èrhetnènk mint magában csak ionhajtóműves rendszerrel. Szerinted jól gondolom, vagy ez csak egy tèves gondolatmenet így késő este fél 12 körül. 😊
@@attilaperlaki2834
Teljesen jól látod, ma is így használjál, hiszen ionmeghajtással még a bolygó légkörét sem lehet elhagyni. Utána viszont remek hajtóerő!
@@attilaperlaki2834 Pont ezt akartam leírni :), vagyis majdnem. Annyiban változtatnám, hogy az űrből indításnál egy cél felé a kémiaival végezném a gyors gyorsítást, de annyi fuelt hagynék benne, hogy a gyors lassításra is elég legyen, mivel rengeteg időt lehetne nyerni, ha nem ionnal kellene lassítaunk, hiszen akkor időben már jóval a cél előtt "ionfékezni" kéne. Az utazás időben értett nagy része alatt meg lehetne az ionnal gyorsítani. (picit más) - Nekem az nem akar összeállni, hogy ha már az űrből tudnánk indítani (másik űrhajó vinne fel fuelt) teljesen feltöltött kémiai rakétát, akkor azzal elvileg kevés fuellal óriási sebességet lehet elérni, aztán azonnal leállítani, ha már megvan a kellő lendület, sebesség, irány. Tehát, ahogy én mint laikus látom, relatív kevés fuel szükséges gyors sebesség eléréséhez és az onnan való lassításhoz is. Ezért is fura (de biztos csak nekem), hogy ilyen küldetésről miért nem hallottam még. Mondjuk pl egy ilyen "trükkös" tankolós verzióval, űrből indítva teli tartályokkal miért is nem megyünk holdraszállni?! - Jó, biztos a költségek is másabbak így, meg van-e értelme holdraszállni, meg talán az lehet még, hogy ha méretesebb égitestek közelében haladunk el, akkor újra és újra be kellene indítani a kémiai hajtóműveket a gravitációs hatásuk ellensúlyozása érdekében. - Lehet, hogy a laikus az egy erősen hízelgő jelző rám, de nekem akkor is fura, hogy ilyen nagy fokú indításszám, műholdflevitel, űrtevékenység stb mellett senki nem akar emberrel a holdra menni?! Ha akkor presztízs volt, most miért ne lenne az, még ha nem is akkora persze, de mégis?!
@@Fenevad23 A holdraszállásnak a hatvanas években világpolitikai jelentősége volt, mégpedig azt bizonyították vele, hogy a kapitalista rendszer fejlődőképesebb, magasabb rendű, mint az ellenpólus. A szovjet típusú rendszer számára ez egyértelmű vereséget jelentett, amit később sem tudott teljesen kiheverni.
Ma már ekkora politikai jelentősége egy "űrsikernek" nincs. Bár, ha Kína előbb küldene embereket a Marsra, mint az USA, az kissé elgondolkodtató lenne.
Ez megint nagyon jó lett! Csak így tovább!❤️
Hogy én mennyire vártam már ezt a részt. Szuper lett a videó. Csak így tovább, Remélem a jövőben ezel fogunk a marsra menni
Tetszett a videó és nagyon érdekes. A videó 16:00 percéhez tartozik: a Dawn, Dart és talán a jövőbeli Lunar Gateway űrállomás is ionhajtóművet használ.
Nagyon nagyon vártam ezt a videót, köszönöm!!!! :)
nagyon jó volt. Engem a hajtómûvek is nagyon èrdekelnek.
Annak idején a lóvasút volt nagy szenzáció, most pedig a parézeres rakéta. Ide jutottunk. De azért tetszett a videó, sokmindent megértettem belőle. Köszönöm!
Mindig is tudni akartam, hogy hogyan működnek!
Szia ! Én is fel lélegeztem, hogy végre az ember kifejlesztette az ION hajtóművet ! És szeretném meg kérdezni, hogy hány kg-m Jódot kellene magával vinni az ION hajtású rakétának ahhoz, hogy elérje a rakéta a Marsot ?
Köszönöm szépen!
Pár száz év múlva indulok a Proxima Centaurira! Alig várom.
Elvinnél egy darabon? Lenne egy kis dolgom a Szíriuszon. Meglátogatnám a felmenőink leszármazotjait.
Köszönjük!
Én is nagyon köszönöm!
8:56 A pozitív atommagot mozgatja pont a pozitív töltéssel rendelkező rács felé ahelyett, hogy a negatív töltésű katód felé venné az irányt?
10:00 A másik elektron ágyú honnan kapja a folyamatos elektron utánpótlást?
Ez nagyon érdekes videó lett!! csak így tovább
szia
nagyon informatív volt, egy dologról nem volt csak benne szó, hogy milyen energiaforrás biztosítja az ionik gyursítására szolgáló elektrosztatikus tér generálását?
köszi
Általában a napelemekkel megtermelt eleltromos árammal, de működhet erre a célra egy nukleáris reaktor is.
Általában a napelemekkel megtermelt eleltromos árammal, de működhet erre a célra egy nukleáris reaktor is.
Nagyon hiányzott ez a videó! 😄👍
Te adtad meg a végső lökést egy YT elofizeteshez :D Valószínűleg kisebbségben vagyok vele, de inkább fizetek mint reklámokat nézzek, pláne percenként. Pedig nagyon jók a videók. Havi elofizetest is fizetnék (1-2száz ft max, ha azt nézzük, hogy egy nagy szerkesztőség által készített újság havi díjai hol mozognak).
Azért csak így tovább!
Fyi, a YT havi elofizetes 6 fele oszthato.
Egy kérdés: Gyakori vád az űrkutatással szemben a rakáték környezetre gyakorolt hatása, namost ilyenkor mindig eszembe jut a hidrogén-oxigén keverék. Ha ennek megvan az az előnye, hogy környezetkímélő, akkor mi az oka annak, hogy a kerozinos megoldásokat még használják, főleg az olyan, nem legacy rendszereknél, mint a SpaceX rakétáinál?
Egyszerűbb a kerozin kezelése és tárolása, mint a folyékony hidrogéné.
Ezáltal ocsóbb is.
Hát a hidrogén előállítása is szenyez.
Ami a környezet szennyezést illeti:
1. A hidrogén előállítása rengeteg energiát igényel, jelenleg legolcsóbb módja vegyi eljárások amik szintén környezet szennyezőek (tehát nem a sokak által ismert módon, a víz elektrolizissével állítják elő)
2. A vízpára is üvegház hatású (ha éjszaka derült az ég, a hajnal sokkal hidegebb mintha be lenen borulva), csak nem szoktuk annak tekinteni mert természetes módon fordul elő, illetve a maximális mértéke korlátozott (páratartalom), és a többlet eső formájában leesik. Viszont ez a körforgás leginkább az alsó légrétegekre igaz. A magasabb légrétegekben sokkal ritkább a víz jelenléte, és onnan a többlet víz sokkal lassabban esik vissza a körforgásba. Tehát hidrogénes hajtóművek esetén a keletkezett vízpára szintén hagy üvegház hatású gázt maga után, ami egy bizonyos idő után visszakerül a víz körforgásba
Ami a hidrogént mint üzemanyagot illeti két hatalmas hátránya van:
1. térfogat. Sokkal ritkább még csepfolyós formában is mint a többi üzemanyag. Így sokkal nagyobb tartályt igényel mint a többi üzem anyag, ami többlet súly, nagyobb légellenállás.
2. nagyon hideg. A csepfolyós hidrogén -250 foknál is hidegebb. Amire lehűteni a hidrogént rengeteg energia, azon tartani komoly hőszigetelést igényel ami töblet súlyt jelent a rakétán. Nem csak a külső felület felé kell szigetelni, hanem az oxigén tartály felé is, mert olyan hideg hogy a csepfolyós oxigént megfagyasztja, eldugítva az oxigén csöveket.
A térfogat problémák miatt a hydrolox meghajtást leginkább a felső fokozatoknál szokták használni, ott hatékonyabb mint az RP1 (kerozin) meghajtás.
Pl a Saturn V rakéták második és harmadik fokozatai hidrogént használtak, míg az also RP1et.
A SpaceX nem akarta bonyolítani a Falcon9-et azzal hogy a felső rész hydrolox meghajtásű legyen.
Ahhoz új rakéta motort kellett volna tervezni, a földön is külön kezelni hozzá az ellátást indítás előtt, stb. Egyszerűbb volt az alsó fokozaton használt motrot kicsit módosítani (gáz turbinával történő rotáció irányítás) és nagyobb tölcsért rakni rá
@@vhatuma Na és mi van akkor, ha a hidrogént közvetlenül a világűrben, a hajón állítanák elő hidrolízissel? Feltételezve egy nagy víztartályt? Ott pl. a hűtés is megoldott, mivel eleve egy giga frigóban vannak.:)
@@tiborzolnai5367
"a hűtés is megoldott"
Sajnos nem így van. A világűrben az üzemanyag hűtésével is kell foglalkozni.
Az igaz hogy a világűr hideg, viszont nagyon ritka, szinte teljes vákum. Ezért nem vesz fel sok hőenergiát az űrben levő dolgokról.
Hétköznapi példával élve: Amikor köd van és +2fok, akkor nagyon fázunk, ha -2 és száraz az idő, az egész kellemes tud lenni. Hiába van ködös időben melegebb, a párás levegő sokkal gyorsabban veszi fel a hőenergiát mint a száraz levegő.
+18-20 fokos vízben úszva szintén jobban fázunk mint mondjuk +10 fokos levegőn.
A világűr olyan gyengén veszi át a hőmérsékletet hogy nem is számolnak vele az űrhajósok. Ahhoz hogy hűtsék az űrhajót/űrállomásokat a hőt infravörös fényként távolítják el (minden meleg test bocsájt ki infravörös sugarat a hőmérséklet függvényében, így működnek a hőkamerák). Minél hidegebb valami annál kevésbé sugározza ki a hőt infravörös fényként. A lassú hülés még nem is lenne olyan gond, viszont ha nem vagyunk pl a Föld árnyékában a nap sugarak felmelegítik az űrben levő eszközöket.
A SpaceX egyik nagy kihívása lesz a Starship működésében hogy megoldják hogy a folyékony metán és oxigén ne párologjon el útközben a Mars fele. A hidrogén hidegen tartása még nehezebb feleadat, vízet elektrolizálni, és azt lehűteni meg szinte lehetetlen kihívás az űrben. Rengeteg energia, sok négyzetmétet plusz napelem és rengeteg idő.
Akkor már marad az ion meghajtók, amik hatékonyabbak / tömeg takarékosabbak is.
mennyi idő kéne, hogy egy 4-es fokozatu térhajtóművett építsünk?
2-300 év.
@@salzdorfer köszi
Egy kis pontositas. 3:20 korul. (bocs!) Nem feltetlen kell szikra a begyujtashoz. A hipergol anyagoknal nincs erre szukseg eleg vegyiteni a kettot, es a robbanas azonnal bekovetkezik. Az Apollok eseteben a muszaki egyseg volt ilyen rendszeru. A ket alkoto: hidrazin, es dinitrogen-tetroxid. Ezt ma is kevelik mert a nagy molekula meretenek koszonhetoen sokaig lehet tarolni, ellentetben a ketatomos hidrogennel. egyebkent jo volt az eloadas.
A szövegben is elhangzik, hogy példa rakétánknál kerozin és oxigén kerül az égéstérbe.
Ott pedig kell szikra.
Szia! Lehetne egy videó a különböző cégek, űrhivatalok rakétahajtóműveiről, eddig a különböző (számomra kínai) ábrák miatt a SpaceX Raptorját( ha jól tudom, még nem repült) tartottam a legerősebbnek. De jelenleg úgy érzem, folyamatosan változik a helyzet.
Közel sem a legerősebb, és mártöbbször repült a prototípusokkal. :)
Az egyik legerősebb úgy rémlik a RS-68A( Delta IV Heavy) hajtóműve. 3,137 MN. A Raptor 1,81 MN tólóerőt tud.
Gergő, 1:28-tól olyan jól sikerült a 🎈-s hajtóműved 👏🏼, és annak prezentálása, hogy máris azt látom, ezt a NASA nagyon elcseszte, s bizony nagyon eltévedt a kémiai hajtóművekkel! 😉😆
Az ➕➖ ⎎⇢ meg egyszerűen kanfasztikus, egy igazán elmés találmány!
Csak azt nem értettem, hogy miért nem tesznek a hajtómű külső részére 180 fokkal átellenben is egy elektronszóró fejet a hatékonyság javítása érdekében, illetve talán 90 fokonként kéne elhelyezni egyet, egyet.
Köszönöm a sok értékes információt és modellt, ez is nagyon jó óra volt, élveztem! 😊
Köszönjük! Nagyon érdekes téma,és szuper video! :)
szemléletes volt, köszi
Szuper lett, Ion hajtómű a favoritom :D
Szuper a videó. A kérdésem,hogy a jövőben esetleg az FTL utazásról tervezel videót. Érdekes lenne a te szemléltetéseddel.
Szuper video😉 Tervezel videot csinalni a proxima centauri-rol is? Lattam rola egy dokufilmet, itt fent van youtuben, de az a tipikus dokufilm amiben 50 percet beszelnek 5 perc valodi tartalomrol. Te biztos ezerszer jobb videot tudnal rola csinalni tobb informacioval.
“Ajajaj de bonyolult képlet. Meneküljünk„ Ezt nagyon adtam😂😂
Csodálatos! Köszönöm szépen!
nagyon jó volt! Már várom a pillanatot amikor valaki kitalálja,hogy hajtóművekkel gyűjtsünk össze egycsomóba bolygókat,amikről van még valami kizsákmányolni való,hozzuk ide őket ,ne kelljen messzire utazni hozzájuk😆😂
Nem biztos, hogy jó ötlet idezsúfolni annyi tömeget. A földpálya stabilitását is figyelembe kéne venni, mert a tömegvonzás az tömegvonzás...
Imádom
Ez nagyon menő!
A kérdés csak az, hogy a világűrben ha vákum van, az az kb. semmi, akkor mitől rúgja el magát bármilyen tolóerő is? Mert a vízben a jet hajtás a víztől rúgja, vagy tolja el magát, a levegőben a hajtóerők a levegőtől, de az ürben mitől? Ertelmes és logikus válaszokat előre is köszönöm!
Nem kell közegtől ellökni magunkat.
Ha egy görgős széken ellöksz magadtól egy medicin labdárt, akkor elmozdulsz, akkor is, ha ezt vákuumban teszed.
A közeg nem számít.
Egyébként a felsorolt hajtóművek is működnének az űrben, ha lenne hozzájuk megfelelő befolyó anyagy.
Szuper videó :)
A fotonrakétákról nem lesz majd videó?
Üdv! Több ion hajtomű jobb gyorsulást eredményez?
Termétetesen
Nagyon jó videó lett :) de, a plazma hajtóműről (vasimr) is csinálsz videót előre is köszönöm szépen.
A vasimr nem plazmával hanem mikróhullámmal működik
@@gabornagy7943 Ez sem teljesen igaz. Valóban mikróhullámmal ionizálja gázt plazma állapotba majd mágneses térrel gyorsitja fel azt a kiván sebességre. A neve magyarra forditva: Változtatható impulzusűrűségű mágnesplazma rakéta. Mivel a tólóerőt a plazmaállapotba hevitett gáz adja.
A sebesség már megvan, de hogyan fogunk lassítani?
Ugyanígy?
Szia, Azt mondtad az égéses hajtómű hatásfoka kb 30%, az ionosnak mennyi?
Az ionizáláshoz szükséges energiát a Starlinkek napelemekkel nyerik?
Köszi
Úgy 90% körül van.
Igen, napenergiából nyerik a szükséges elektromosságot.
a plazma meghajtásról is beszélhetnél, skysrác ;)
a következő lehetséges lépés az lehet hogy az ionhajtómű az anyagát az űrben elérhető anyagból vételezze, ergo ha nem kell magával vinnie bármekkora utazások lehetségesek lesznek. Illetve hallottam már hogy a fotonoknak is van tolóereje ami egy vitorlaszerű szerkezettel fogható fel.
A tömeg tényleg változik a sebesség függvényében?
Igen, de az általunk ismert sebességeknél ez elanyagolató.
A fényseesség közelében viszont már radikális növekedést tapasztalnánk.
Nem
A Soyuz rakétáját men Proton-nak vagy Proton M-nek hívják? Vagy rosszul tudom?
Rosszul.
Két külön gyorsítöról van szó, de erre nyilván te is rá tudsz keresni egy perc alatt.
Tegyük fel a Saturn V rakéta és egy ionhajtóműves rakéta a tengerszinttől számítva 100 kilóméteres magasságbol egyszerre elindulnak tegyük fel "nullás sebességről". Mennyi időbe telne mire az ionhajtóműves rakéta eléri a Saturn V rakéta végsebességét? (A példa kedvéért mondjuk azt hogy ugyanakkora tömegű a két rakéta)
Amit kérdezel arra a Ciolkovszkij egyenlet válaszol. Sok matek!
hu.wikipedia.org/wiki/Ciolkovszkij-egyenlet
Good job! 👍🏻
Ez igen!
Köszi
13:55nél, amikor kilebeg az ajtón az asztronaauta, akkor miért válik átlátszóvá?
Váltottsoros pásztázású kamera miatt
9:21 lehet furcsa kérdés, de ha belesétálnánk egy ilyen csóvába mi történne? Én azt tudom elképzelni hogy olyan lenne mint egy nagyon erős sugárdózis. Abból gondolom hogy ilyen nagy sebességgel áthaladnak a testeden a részecskék az gyakorlatilag olyan mintha sugárzást kapnál. Persze mivel ez nem sugárzás így utána nem sugározna a ruhád/te magad. Aztán lehet hogy nincs igazam és értelmetlen amit mondok.
Ez egy rendkívül híg atomfelhő.
Ha a légkörben kapcsoljuk be, már a levegő részecskéi lelassítanák, így nem lenne hatással ránk.
Az űrben pedig, hát nagyobb bajunk is lenne, ha űrruha nélkül 'sétálgatnánk' előtte.
Super.super.
Minden oxidációs klasszikus rakéta ionokat állít elő a plazma még több tolóerőt adna ezek szerint ha a hőmérséklet függvénye a különböző halmazállapotok
Szokás szerint kiváló!
Space X Marsi starshipjére 11 vagy 12 Ion hajtómü kéne hogy legyen hatása a meghajtásban?ion hajtómü méretét megnöveljük akkora legyen starship akkor az a 1db ion hajtómü felérne 11-12ion hajtómüvel?
Mindennek van hatása, de egy ionhajtómű elhanyagolható pluszt ad.
Nem volt szó róla, hogy honnan veszik az energiát az ionok gyorsítására? Lehet ahoz kell egy nagy tartály tele kerozinnal és oxigénnel? :) Vagy üzemanyagcella, amihez meg hidrogén kell és szintén oxigén? Esetleg széntüzelésű erőmű? :p
Eddig napelemeket használtak az elektromos áram előállításához, de működhet olyan mini RTG-vel is, amiket már sokszor alkalmaztak az űrkutatásban.
@@urkutatasmagyarul Szeretem a videóidat, de ez kissé demagóg (népámító) lett. A legközelebbi csillagig nem is látunk el rendesen, így nem is tudnánk oda célirányosan űreszközt irányítani. Az ion hajtómű gyenge tolóerőre képes ez miatt nagyon sokáig tartna a gyorsítás. Ugyan ilyen sokáig tartana a lassítás is, de csak akkor, ha van elegendő elektromos teljesítmény annak üzemeltetésére. A legközelebbi csillag távolságban/időben oly messze van, hogy működőképesen tartani űreszközt lehetetlen volna. A belső naprendszerben még csak-csak, de a külső naprendszeben és azon túl, már nincs annyi napenergia ami működtetni tudná a hajtóművet. A csillaközi térben meg még ennyi sem. Az eltelt idő miatt, mire fékezni kellene a gyatra teljesítényű hajtóművel, már nem lesz működőképes az űreszköz. Mire a legközelebbi csillagnál, beérne olyan távolságba ahol a napelemek már termelnének némi energiát, a toló erő semmire nem lenne elegendő, a célzott lassításhoz pláne nem. egyébként kérdés, hogy 10-20 ezer év múltán működőképes maradna-e ez elektronikai rendszer, abszolút nullafokon? A realitás talaján állva szerintem ki lehet jelenteni, hogy az emberiség a Naprendszerbe van zárva és a Földre van kötve. Nem arról van szó, hogy két maréknyi embert ne tudnánk pl. a Marsra küldeni, hanem arról, hogy azok ott több ezres, több generációs popuációt nem tudnának létrehozni. Az emberi fantázia határtalan, ezért is hisznek páran az istenekben, vagy abban , hogy térhajlítással felfoghatatlan méretű tárgyakat, benne életben lévő embereket lehet eljuttatni galaxisokon át bárhová. És most hullajtsunk el pár könnyet azokért is, akik azt hiszik, hogy ez valósággá válhat. :) ua-cam.com/video/XEQ7oy03c0o/v-deo.html
köszi tök jók az animációk tetszett, viszont lenne egy kérdésem is ha szabad
mihez képest hat a tolóerő hiszen az űrben nincs semmi vagyis légüres térben vagyunk ott hogy fejti ki a hatást mihez képest tolja el magát a rakéta
köszönöm megtisztelő válaszát
Ha egy görgős széken ülve löksz el a kezedből egy medicinlabdát, akkor elmozdulsz. Akkor is, ha nincs légkör.
Impulzus megmaradásának törvénye miatt működik. Ezt szokás rakétaelvként is emlegetni. Gondolj egy puskával való lövésre: a golyó nagy sebességgel elszáll az elsütés pillanatában, ugyanakkor a fegyvert tartó embert az ellenkező irányba meg is löki a puska (ennek a veszélyes lökő/ütő hatásnak kivédése miatt kell a puskát erősen a vállhoz támasztani...)
Szerencsesebb lett volna nem úgy fogalmazni, hogy a molekulákat "összepréseli" a lufi fala (mint pl. egy szivacsot), hanem közelebb nyomja egymáshoz. A mollekulák térfogata/alakja változatlan marad.
Igen, ez jogos
Tök jó lenne ha az ionhajtómű nem csak a protont tudná kilőni, hanem külön kijáraton, de egyszerre az elektront és a neutront is.
Újranéztem a videót, az elektronnak nincs tömege, nem érné meg elektronnal megcsinálni.
A neutront meg töltöttség híján nehezebb kilőni, bár lehet hogy valamilyen maghasadás során keletkező felelsleges neutronokat ki lehetne lőni, ha amúgy is Mini atomi erőművet használnak néha az űrben
Ha van állandó tolóerő, az űreszköz belsejében van érezhető "gravitáció"?
Amire te gondolsz, az a gyorsulás. Igen, lesz, de oly' csekély, hogy az űrhajósok észre sem vennék, ugyanúgy lebegnének az űrhajó/űrállomás belsejében.
a hajtóműből kiáramljó gőzok, gázok hány C°-osak? itt gondolok arra a jelenetre amely 3:46-kor van
Pár ezer fokosak
Lenne egy kérdésem ! Ha ilyen lassan haladna az ionos járművünk akkor hogy szökik ki egy bolygó gravitációs vonzásábol? Értem hogy folyamatosan menni fog de egyre nagyobb lesz a vonzás is nem?
Nem, a távolság négyzetével forditott arányban folyamatosan csökken a gravitációs hatás.
@@urkutatasmagyarul ezt értem de mivan ha nem tudunk távolodni mert mivel kicsi a sebesség így meszennröl van az a bizonyos holdpont
Úgy értettem hogy a földnek is van egy bizonyos szökési sebessége amivel már meghaladjuk a gravitációs vonzást és ha egy nagyobb bojgo mellett megyünk el akkor Mizu? 🤔
Ezt így nem igzán értem. Milyen pont van messzebb? És az miért függne a sebességtől?
@@urkutatasmagyarul hát van a gravitációs erő ami húz magához és ahoz kell a sebesség és van egy tömeg akkor kell egy bizonyos sebesség a gravitációs vonzás ellen
Es ha nincs felvagottunk, csak sajt, akkor is mukodik az abra?
Ki kell próbálni! ;)
Üdv a fedélzeten kapitány
Yes, Sir, Yes! ;)
A fizika tanárom le vetíthetné ezt a videót mert egyrészt érdekes,más részt pont erről tanulunk.
Hello
Nap vitorlákról lesz majd videó ?
esetleg nasa orion project röl?
Listámon vannak ;)
@@urkutatasmagyarul szuper
szerinted működhetett volna a orion project
parizeeeer :))
Mellé kevés sajt, egy kis hegyes erős, és én meg is vagyok! :)
@@urkutatasmagyarul csak Schrödinger macskája meg ne egye előled :))
Tudom alapvető dolog, de végre megèrtettem az atom elektron proton neutron ion dolgok igazi mibenlètèt és az okokat, hogy miért jó, hogy ennyi mindent tudunk róluk.
A tudás hatalom, a tudás mindenkié! ;)
Mekkora lehet egy ion hajtómű hatásfoka?
Akár 95%!
az szép, azt már lehet csak egy anyag-antianyag hajtómű űberelné 😂
Az ionhajtómű el tudna érni az 1G gyorsulást?
Persze, ha jó sokat felrakunk egy űrhajóra, közel korlátlan elektromos energiával.
@@urkutatasmagyarul Vigye magával az ITER-t ! :)
A csomagtartóba? :D
A nukleáris hajtóműé a jövő.....csak még vagy 5-10 év mire használható lesz :(
@@urkutatasmagyarul Pórázon úgy nem foglal helyet! :)
👍👌
09:00 ** a két rács közt 30km/secre gyorsulnak, ez több mint 100.000km/h** felénk az négy sec alatt megvan ha nem tévedek 4*30km az 120km az 3* körbe a bolygó az egyenlítőn :)
Ha annakidején a Woyager urszondàn lett volna ionhajtomu, akkor ma hol tartana?
Ki tudja?!
@@urkutatasmagyarul
Ki lehetne szàmitani.
Megvan hogy mikor indult el és hogy mekkora egy mai legmodernebb ionhajtomu teljesitménye.
Csak gondolatkisérletnek....
De hogy rakattunk volna rá ilyet 45 évvel ezelőtt?
És mennyi üzemanyaggal számolnánk? Folyamatos használat mellett, vagy csak az utolsó bolygó melleti elhaladás után kapcsoltuk volna be?
@@urkutatasmagyarul
"De hogy rakattunk volna rá ilyet 45 évvel ezelőtt?"
Nem szàmit, mivel ez csak egy gondolatkisérlet.
@@urkutatasmagyarul
Pl ha ma kuldenénk el a mai Wojagerunket a legmodernebb technikàkkal, akkor az 2067-ben hol jàrna?
⭐️⭐️⭐️⭐️⭐️
ez a dimenzio jó halad !! de ma màr vàrosok utaznak !! 😉
?
A videó egy fontos dologra nem tért ki: az ionizálásra és az ionok gyorsítására honnan veszi az energiát a hajtómű?
A mostaniak napelemekkel gyűjtenek elektronos energiát.
Nagyon jó lett a videó de az ionhajtómúveknek nincs akkora tolóreje hogy néhány hétre csökkentse a mars utazást.
Egynek biztos nincs, de ha telepakolunk vele egy űrhajót?
@@urkutatasmagyarul na azért ennèl egyszerűbb,ólcsobb és hatékonyab megoldásom lenne,ja és az űzemanyag sose fogyna ki.
Lenne egy kérdésem. 🤔 Az emberi szervezet vajon képes lenne túlélni azt a sebességet, amit az ion... Izé! Ilyen hajtóművel (vekkel) el lehet érni? Bocs, a szóviccért! 😉
A sebességet a szervezet nem érzékeli, a gyorsulás a kérdéses.
Meg van a mai kábszeren, már be is ájultam!-hihi
Parizel agyon jó volt egy kicsit belecsempésztél egy kicsi vicceset is
Az lenne a kérdésem h hogyan hat az ionhajtómü a légkör rétegeire (leginkább az o3 réteg érdekellne)?
A légkörben nem használunk ionhajtóművet.
Begyujtja
Nem lenne rossz egy videó különböző csillagközi technológiák összehasonlításáról sem: ionhajtómű, nukleáris impulzusmeghajtás, fúziós rakéta, napvitorla stb
Lehet az atommagban lévő energiából sokkal többet lehetne kinyerni mint az elektron héjákon lévő kémia energiából a tömeg/kibocsátott energia arányában.
Az a baj, hogy az űrben akármennyi elektromos áramunk lehet, ahhoz, hogy megmozduljunk, muszáj valamit ellökni magunktól. Tömeggel rendelkező anyagot.
@@urkutatasmagyarul Ez az állítás bizonyítottan nem igaz. Csak még vagy senki nem ismerte fel ezt a jelenséget, vagy direkt elhalgatják. Mivel a konteókban nem hiszek, ezért csak az első eshetőségre tudok gondolni. Pedig olyan egyszerű.
Bizonyítottan?
Küldenél erről egy tanulmányt?
@@urkutatasmagyarul Nem kell tömeget elökni, ez nem igaz. Minden űrbe juttatott eszközön amit bármijen modon navigálnak vagy pozicionálnak, használják ezt az elvet. Már a V1 en is használták, ha jól emlékszem. Súgok egy kicsit: giroszkóp. (Csak egy picit módosítani kell, de az elv ugyan az.) A meghajtást a rakétaelvnél egyébként a gyorsítás adja, és nem a tömeg vesztés. A rakétamotor lényegében egy lineális részecske gyorsító. És ez igaz az elektromos és a kémiai elvüre is. El tudod képzelni, hogy mit jelentene egy olyan üreszköz aminek nem kell a gyorsításához hajtóanyagot felhasználnia, csak energiát? Én sejtem hogy hogyan müködhet egy ilyen. Lényegében minden teknológia létezik hozzá márt ma is. Ipari szinten használják mindet. Csak át kellene ültetni a vákum környezetére és más módon felhasználni őket.
@ A giroszkóp egy nagy fordulatszámú tárcsa, amely ellene dolgozik a tengelyét elfordítani igyekvő erőnek. Használhatják iránystabilizálásra, valamint külső segéderőtől mentes irányváltoztatásra.
Ez viszont, lásd giroszkóp, tudomásom szerint gyorsításra nem használható. Üdv.
Ezzel kapcsolatban eszembe jutott egy elmés szerkezet, melynek a neve diffúziós ködkamra. Idehaza tudtommal kettő ilyen szerkezet van, az egyiket volt szerencsem saját szememmel látni. Detektálható vele a sugárzás( amerícium-241) de ami minket ugyebár jobban érdekel, a kozmikus sugárzás is!
Van e ismert elvi akadálya, hogy megfelelő áramforrás birtokában lényegesen nagyobb tolóerejű ionhajtóműveket építsünk? Mondjuk ami már nem grammokban, hanem kg mérhető tolóerőt biztosít?
Nagyon dolgoznak a kompakt atomerőműveken, amikkel a Holdon, vagy a Marson képesek árammal ellátni a bázisokat. Nem nehéz kilegózni, hogy ezek működnének egy pályára állított űrhajón is. Így a megszokott napelemekből nyerhető néhány ezer watt energia helyett már kilovattok álnának rendelkezésre.
Egy ilyen nukleáris energiaforrás évtizeden keresztül képes árammal ellátni akár egy vagy több ionhajtóművet is. Vagyis akár mély-űri küldetésekre is használhatóak lennének, és nem évszázados fejlesztés, hanem maximum 5 -10 éven belül. Ha nem is emberes küldetésekre, de előre tolt állások létrehozására fel lehetne használni.
Az Európára, vagy az Enceladus-ra szánt küldetéseket drasztikusan felgyorsíthatná pl. Ráadásul a nukleáris erőmű alkalmassá tehetné ezeket a szondákat a holdak jégpáncéljának átolvasztására is.
Ezek valóban jó ötletek, viszont a nemzetközi egyezmények korlátozzák a plutónium (és más radioaktív anyagok) előkészítését.
Erről már évek óta tárgyal a NASA a döntéshozókkal, hogy űrkutatási célokra lehessen használni ezeket az anyagokat, csak mindenki attól fél, hogy akkor mindenre azt mondanák, hogy űrkutatási céllal készül.
Hátha a jövőben lesz Fúziós reaktor
@@VRGJozsef Fúziós reaktor nem lesz, hanem már van. Ráadásul nem is egy hanem több is. Rengeteg nemzet invesztált a fúziós reaktorokba, amik nem csak elméletben hanem gyakorlatban is működnek. Az európai ITER projektben ráadásul rengeteg Magyar szakember is dolgozik. Az Európai 500MW-os ITER Tokamak típusú erőművőn kívül ott van a 150MW-os DEMO ami szintén Európai kézben van és szintén egy Tokamak. Kínában működik egy 50MW-os Tokamak rendszeren alapúló reaktor, az USA pedig (az ITER-en kívül) dolgozik saját rendszeren és tovább akarja fejleszteni a Tokamak tórusz reaktor rendszert, egy hatékonyabbra. Szóval fúziós reaktorok vannak, működnek. Ajánlom az ITER honlapját, ott nyomon lehet követni szinte mindent. Ami miatt nem elterjedt, az a mérete, a működtetése, és a bonyolultsága. Ellenben biztonságosabbak. A hagyományos atomreaktornál, nem kell semmit se csinálni, csak kiemelni a reaktor rudakat, és már melegszik is a víz. A fúziós reaktornál elsőnek plazma állapotba kell hozni a két anyagot amit fúziónálni szeretnénk, általában deutériumot és triciumot. A reaktor MW-t jelőlése nem a kinyert energiát jelenti, hanem hogy mennyi energia megy be a "fűtő" rendszerbe. Tehát egy 50MW-os reaktor annyit jelent, hogy 50MW energiát tolnak bele, hogy a fúziót beindítsák. Több beleölt energia = több plazma = nagyobb fúzió = több kinyert hő = nagyobb energia megtérülés. Sajnos az 50MW-os rendszer túl kicsi, és túl kevés energiát termel, ezért épül a 150MW-os és az 500MW-os nagyobbak. Ajánlom az ITER weboldalát, ott rengeteg anyagot biztosítanak az érdeklődőknek.
Egyelőre elképzelhetetlen "nagy" teljesítményű elektomos áram termelésére alkalmas atomreaktór működtetése vákumban. Még nem létezik olyan technológia amivel az ehhez szükséges höt le lehetne adni. Több tiz négyzetkilométeres hőleadó infra radiátórra lenne ehez szükség.
2024.05.02. Köszönet.
Hát igen .🙄 EL JÖN az a idő is mikor a fény sebességgel FOGUNK tudni UTAZNI .
☝️ JÖVŐBEN.. MARS kb. 25 perc
⭐ 1.2 év ...
Fénysebességgel nem tudunk utazni. Úgy csak a részecskék valószínűségi hulláma (által továbbított információ/energia) tud. Az talán ("talán"!) lehetséges lesz, hogy információként továbbítsuk magunkat fénysebességgel, de azt én nem hívnám utazásnak, mert az utazásról nem keletkezne élményünk (azt tapasztalnánk, hogy az egyik pillanatban itt, a másikban már ott létezünk).
5:55 "Erre már a tudósok is rájöttek"
Itt azért eléggé lenézed a tudományos világot.
Ha úgy mondtam volna, hogy "Érdekes módon erre rájöttek a tudósok is", akkor valóban úgy hangzana.