undetermined coefficients, diff eq, sect4.5#19

Поділитися
Вставка
  • Опубліковано 26 лис 2024

КОМЕНТАРІ • 178

  • @boing7771000
    @boing7771000 6 років тому +44

    I love how enthusiastic and natural this guy is:)

  • @--8251
    @--8251 4 роки тому +54

    ngl, I was too worried about the thermal detonator in his hand to focus on the problem

  • @nahdoodavis3924
    @nahdoodavis3924 6 років тому +71

    You just helped me so much on my ODEs test. I wish my professor taught the way you did! Great job.

    • @blackpenredpen
      @blackpenredpen  6 років тому +12

      You're welcome! I hope you did well on the exam!

    • @Sleepy46169
      @Sleepy46169 Рік тому

      Dear sir. Your final answer of the Y sub h is C sub 1e^t + C sub 2e^2t. Is it alright that the final answer of the Y sub h, its roots were shuffled? Like mine is C sub 1e^2t + C sub 2e^t. Is this the same?

    • @hugopurpeq
      @hugopurpeq Рік тому

      @@Sleepy46169 yes its the same

  • @betechtechnology942
    @betechtechnology942 7 років тому +69

    thank you very much you the best good techniques especially on 2nd derivative it could have been very very long

  • @hans3331000
    @hans3331000 7 років тому +9

    normally i just look at videos hopelessly and give up. then i found you, thank you for contributing to my 100% on the midterm. you're a lifesaver, i just couldn't learn this one by myself. ily no homo

  • @kabirkohli9920
    @kabirkohli9920 6 років тому +16

    You're literally the reason I'm gonna pass my exam

  • @malikaOsman-i2m
    @malikaOsman-i2m 19 годин тому

    he is the best teacher DEquation teacher out there

  • @nicoleng4181
    @nicoleng4181 3 роки тому +5

    16:36 yes i feel so accomplished hahah and omaigosh i've been finding a video that explains this well and you're the only one that I UNDERSTOOD SO WELL thank you

  • @davidnigelsemuyaba1131
    @davidnigelsemuyaba1131 3 роки тому

    I do appreciate you for your service, you have rilly talented in teaching, may God 🙏 bless you

  • @ayodelerighteous
    @ayodelerighteous 2 роки тому +1

    You just salvaged my fast approaching mathematics examination!

  • @photomath4327
    @photomath4327 3 роки тому +2

    Exactly what have been searching for ...thank you so much 🙏🙏, your video have been helping

  • @Engineering_conceptsUOM
    @Engineering_conceptsUOM 2 роки тому +1

    Thank you sir… you are my mathematics hero

  • @ianmoseley9910
    @ianmoseley9910 6 років тому +24

    2B or negative 2B, that is the question ...

    • @dylongoodyear7718
      @dylongoodyear7718 5 років тому +1

      lmao i enjoyed that

    • @nsifrahman9031
      @nsifrahman9031 5 років тому

      @@dylongoodyear7718 Can I enjoy you?

    • @mcleanephatha
      @mcleanephatha 5 років тому

      @@nsifrahman9031 You can enjoy me!

    • @hellmuth26
      @hellmuth26 4 роки тому +2

      every time I have a 2B i say "or not to be," it's a terrible compulsion and I wish I could stop.

  • @aljoker3053
    @aljoker3053 3 роки тому

    A coil of inductance L Henry and a capacitor of C Farad are connected in series if I=I0, Q=Q0 when t=0 Find: Q and I when t

    • @carultch
      @carultch Рік тому

      The corresponding diffEQ is:
      L*Q"(t) + Q(t)/C = 0
      Characteristic equation:
      L*r^2 + r/C = 0
      Solution for r:
      r = +/-i/sqrt(L*C)
      The solution for Q(t), is a linear combination of sine and cosine, with a frequency equal to the imaginary part of r:
      Q(t) = A*cos(sqrt(1/(L*C))*t) + B*cos(sqrt(1/(L*C))*t)
      At t=0, Q(0) = Q0, and I(0) = I0, which is the same thing as Q'(0).
      Find Q'(t), which is also I(t):
      Q'(t) = sqrt(1/(L*C))*(-A*sin(sqrt(1/(L*C))*t) + B*sin(sqrt(1/(L*C))*t))
      At t=0, sine is zero, so the cosine terms govern. This means:
      A = Q0
      B*sqrt(1/(L*C)) = I0, solve for B: B = I0*sqrt(L*C)
      Thus our result is:
      Q(t) = Q0*cos(sqrt(1/(L*C))*t) + I0*sqrt(L*C)*sin(sqrt(1/(L*C))*t)
      I(t) = sqrt(1/(L*C))*(-Q0*sin(sqrt(1/(L*C))*t) + I0*sqrt(L*C)*sin(sqrt(1/(L*C))*t))

  • @timotejfasiang
    @timotejfasiang 2 роки тому +2

    The hardest part for this guy was distributing the - into the (A + B) at 7:35😂

  • @xOxAdnanxOx
    @xOxAdnanxOx 5 років тому +2

    all the way from the u world to differential equations, we been together my friend... thank you

  • @zhou4168
    @zhou4168 6 років тому +5

    it is a good video, thanks. Already subscribed, hoping to watch more!

  • @GisselMejiashortyeah
    @GisselMejiashortyeah Рік тому +1

    You are awesome. Thank you very much

  • @bukkiofuzi1725
    @bukkiofuzi1725 3 роки тому

    I love how you handled the second derivative

  • @jamalmanking3928
    @jamalmanking3928 6 років тому +3

    It so amazing please more videos please for the subject Deferential equation please.

    • @blackpenredpen
      @blackpenredpen  6 років тому

      I have many playlists on that already. Check out my channel home page.

  • @LL-kn1de
    @LL-kn1de 6 років тому +2

    Wow! This is so helpful. I wish I found this video earlier! Thank you !!!

  • @joshuastier231
    @joshuastier231 7 років тому +13

    Dude you are fantastic thank you so much

  • @shoberino3898
    @shoberino3898 3 роки тому +1

    14:49 “I didn’t even use a calculator so you guys can do this too” says the human calculator

  • @__IzanNafisRahman
    @__IzanNafisRahman 2 роки тому +2

    this guy is a real chad

  • @bandarhindi8450
    @bandarhindi8450 6 років тому

    your techniques are very helpful

  • @anamuslamh09
    @anamuslamh09 5 років тому

    You the best 👍👍👍✅🏆🥇

  • @edgarb.6187
    @edgarb.6187 4 роки тому +2

    Ive been looking for examples of
    X^n*sin(x)
    Or X^n*cos(x)
    But haven't seen any on youtube. Any one know some links? Thanks.

  • @mumtazbegum3492
    @mumtazbegum3492 5 років тому

    Very well ....super bro... thank u so much

  • @111abdurrahman
    @111abdurrahman 5 років тому

    you are serving the humanity dude!

  • @wajeehalamoudi5945
    @wajeehalamoudi5945 8 місяців тому

    is there any previous illustration video such #18 or 4?

  • @ahmedbelloe3923
    @ahmedbelloe3923 3 роки тому

    I used De-operator method and it was much easier and fast too. I had the same answer

  • @XLatMaths
    @XLatMaths 4 роки тому +1

    Why don't you have to set the particular integral to A*te^t*sin(t)..., the auxiliary equation already has e^t as one of its components. Don't you have to multiply the P.I. by one power of the variable when one of the auxiliary equation's roots is in the RHS?

    • @amzayd
      @amzayd 4 роки тому

      I have the same question!!!

    • @zingaphiranana8425
      @zingaphiranana8425 2 роки тому

      @@amzayd he made a mistake

    • @ernestschoenmakers8181
      @ernestschoenmakers8181 Рік тому

      @@zingaphiranana8425 Yes he did cause at 12:25 he plugged in -A + B but it should be -A + 3B, so A and B are miscalculated.

  • @Ayeventy
    @Ayeventy 5 років тому

    A million times better than my professor

  • @feelingepic6087
    @feelingepic6087 5 років тому

    Thank u so so much for helping me...now i understand it clearly

  • @bandarhindi8450
    @bandarhindi8450 6 років тому

    Thanks a lot. The video helped me a lot
    you are awesome

  • @antonellaa7120
    @antonellaa7120 6 років тому +3

    I UNDERSTOOD EVERYTHING!!! GOD BLESS YOUUU

  • @elisamarconell9991
    @elisamarconell9991 2 роки тому +1

    thank you kind sir

  • @oluchukwuokoye8412
    @oluchukwuokoye8412 Рік тому

    Thank you for this video

  • @taekwondotime
    @taekwondotime 5 років тому +6

    @1:30 How did you know it was going to be: *yp = Ae^tsin(t) + Be^tcos(t)* ? A bit more explanation is needed there.
    What happens if the equation is y'' - 3y' + 2y = 3t ?
    What happens if the equation is y'' - 3y' + 2y = tan(t) ?
    How does that piece change? Thanks.

    • @gokayfem
      @gokayfem 5 років тому +4

      you should check his differential equations playlist. there is variation of parameters method for tant and other types of undetermined coefficients methods for 3t, e^t kind of things.

    • @alvelymondragon33
      @alvelymondragon33 4 роки тому +1

      I think it's from a table given.. that what i use actually

    • @carultch
      @carultch Рік тому

      If the function on the right hand side is linearly independent of the homogeneous solution, you directly match it with an arbitrary coefficient, and accompany it with other coefficients on its counterparts (more on that later). If it is a constant multiple of one of your solutions to the homogeneous solution, then you multiply by t until it isn't.
      For exponentials, the particular solution will also be exponential.
      For sine or cosine, or a linear combination of both of the same frequency, the particular solution will also be a linear combination of both of the same frequency. Likewise for exponentials, enveloping the sine and cosine.
      For constants, the particular solution will be a placeholder constant, not necessarily equal to your given constant
      For polynomials of t, the particular solution will be a polynomial of the same degree, and placeholder coefficients along the way.
      For anything else that isn't a linear combination of the above, you'd have to use another method, like variation of parameters.

  • @Eta_Carinae__
    @Eta_Carinae__ 6 років тому +1

    B=-1/2 not 1/2. Otherwise -A-B=0 isn't satisfied. Final answer should read: y=C1e^t+C2-(1/2)(e^t)sin(t)-(1/2)(e^t)cos(t)

  • @cyberwarrior5217
    @cyberwarrior5217 7 років тому

    oh my god..you make it easy for me..and you r soo funny

  • @TheGuroLOLITA
    @TheGuroLOLITA 4 роки тому

    You are soooooo goooood

  • @tejagandreti
    @tejagandreti 6 років тому

    Tq so much bro very gud explanation

  • @Channel-uf6ko
    @Channel-uf6ko Рік тому

    I can't find any video on the internet doing a combination of polynomial, exponential, and sin and cosine :((

  • @wzablonkalivo2818
    @wzablonkalivo2818 6 років тому

    great work. no need to attend to attend to my lecture

  • @tyronekim3506
    @tyronekim3506 7 років тому

    Excellent video. Thanks!

  • @_ssodaaa
    @_ssodaaa 5 років тому +2

    In particular sol.
    Can I consider yp= Ae^t sin(t) not yp= Ae^t sin(t) + Be^t cos(t) ?
    Because A&B are abitary const.

    • @carultch
      @carultch Рік тому

      Only if you are "lucky" enough that B=0. For this method, you have to account for the possibility that both sine and cosine will play a role in the result, until you rule out the possibility.

  • @olivierbkofficial9426
    @olivierbkofficial9426 7 років тому

    My God!!!! you're just amazing ,thx

  • @tungamiraiaaron1784
    @tungamiraiaaron1784 6 років тому

    u are the best

  • @bhaswatighosh3969
    @bhaswatighosh3969 6 років тому +1

    Can u solve some hardest problems in nth order eqn

  • @deorum59
    @deorum59 6 років тому

    Not all heroes wear capes... Thanks

  • @tomriddle9489
    @tomriddle9489 6 місяців тому

    great😀

  • @Goosebump_guy
    @Goosebump_guy 11 місяців тому

    How could differential Ae^t(sint) still be Ae^t(cost)+Ae^t(sint)?????dont u have to differentiate e^t into te^t ???

  • @joshuammaina4911
    @joshuammaina4911 6 років тому +3

    Can you please do one with the differential operator
    Pretty please with chocolate frosting on the top

    • @aprotutor
      @aprotutor 3 роки тому

      Operator Method:
      Auxiliary equation: r^2-3r+2=0
      (r-1)(r-2)=0
      r=1,2
      Complementary solution y_0=C_1 e^x+C_2 e^2x
      (D-1)(D-2)y=e^x sin⁡x
      Particular solution y_p=1/(D-1)(D-2) (e^x sin⁡x)
      =e^x 1/(D+1-1)(D+1-2) (sin⁡x)
      =e^x 1/D(D-1) (sin⁡x)
      =e^x 1/((D^2-D) ) (sin⁡x)
      =e^x 1/((-1-D) ) (sin⁡x)
      =〖-e〗^x ((D-1))/((D^2-1) ) (sin⁡x)
      =〖-e〗^x ((D-1))/((-1-1) ) (sin⁡x)
      =〖-e〗^x ((D-1))/((-2) ) (sin⁡x)
      =e^x/2 (cos x-sin⁡x)
      General solution y=y_0+y_p=C_1 e^x+C_2 e^2x+e^x/2 (cos x-sin⁡x)

  • @F19991
    @F19991 5 років тому

    Another useful video. But I think it's quite dangerous that you're holding a thermal detonator haha

  • @atone0909
    @atone0909 5 років тому

    Very nice

  • @terrencemadanhi8833
    @terrencemadanhi8833 6 років тому

    thank you brother.you are supper

  • @liujinpeng2635
    @liujinpeng2635 4 роки тому +1

    好像就我一个中国人哈哈,祝您2020新年快乐!

  • @wraster07hp36
    @wraster07hp36 3 роки тому

    Thanks bro.

  • @hapias9300
    @hapias9300 5 років тому

    Thank you well explained.

  • @icee562
    @icee562 6 років тому

    wow, EXTREMLY helpful!!!!!

  • @jacksoncarter6352
    @jacksoncarter6352 4 роки тому

    Perfect thanks

  • @cadendennis3019
    @cadendennis3019 4 роки тому

    That was awesome

  • @arvandvedadi2457
    @arvandvedadi2457 7 років тому +1

    bro you are the best thank you so much man!

  • @marvinzhang3734
    @marvinzhang3734 4 роки тому

    hey man, how do you guess there is a cost??

  • @farissh3924
    @farissh3924 4 роки тому

    thanku

  • @eddiekanhai
    @eddiekanhai 6 років тому

    Thank you so much, this helped me a great amount !

  • @tomatrix7525
    @tomatrix7525 3 роки тому

    Unbelievable!

  • @kazshoichi9369
    @kazshoichi9369 5 років тому

    I feel so accomplished indeed my man

  • @arnelmananghaya7588
    @arnelmananghaya7588 5 років тому

    thank you so much, my friend!!

  • @debbiekalima4541
    @debbiekalima4541 Рік тому

    thank u so much

  • @TheIvar19
    @TheIvar19 3 роки тому

    I just don´t get why we need the Yh solution. Isn´t Yp enough? What does the Homogenous solution add?

    • @carultch
      @carultch Рік тому +1

      yp only solves a special case of initial conditions, that the coefficients in front of the yh parts diminish to zero. The yh part is the transient response from initial conditions, while the yp part is the steady state response that governs what it will be, once the initial conditions are effectively out of the picture.
      As an example, given:
      y" + 4*y' + 3*y = 10*cos(t)
      The homogeneous solution is:
      yh = A*e^(-t) + B*e^(-3*t)
      The particular solution is:
      yp = 2*sin(t) + cos(t)
      In the special case that our conditions start on the curve of yp, then the coefficients A and B both become zero, and we don't need the homogeneous part. This would happen if, in this example, y(0) = 1, and y'(0) = 2.
      What the homogeneous part adds, is the ability for the system to start at any set of initial conditions, and exponentially decay to eventually match the particular solution.

  • @鲁迈萨·本塞吉尔
    @鲁迈萨·本塞吉尔 3 роки тому

    Yp= t e^t ( A Cos(t)+B sin(t)) IS true ?! Because e^t IS in Yh and in f(t) = e^t sin(t) ?! Please answer me

  • @mtahir9181
    @mtahir9181 4 роки тому

    Thank You.

  • @AdnanAdnan-hd7co
    @AdnanAdnan-hd7co 2 роки тому

    ارجو حل الكثير من المعادلات التفاضليه

  • @pushpanjalinayak2765
    @pushpanjalinayak2765 5 років тому

    Thank you so much

  • @Cannongabang
    @Cannongabang 7 років тому +1

    hello blackpenredpen... is the integral sqrt[(x^4-1)/(c-x)] dx solvable???

  • @thomasjefferson6225
    @thomasjefferson6225 Рік тому +1

    I sincerely hate these problems

  • @FS-zt6tm
    @FS-zt6tm 3 роки тому

    what would the general formula be for yp if the right side is e^x(6cosx +17sinx). I'm struggling with trig functions. I know how to do the derivatives, I'm just not sure what to start with.

    • @carultch
      @carultch Рік тому

      Given an RHS of e^x * (6*cos(x) + 17*sin(x))
      The general form of the yp particular solution would be:
      e^x * (A*cos(x) + B*sin(x))
      As long as your given linear combination of sine and cosine both have the same frequency, they both correspond to the particular solution being a linear combination of the two. The e^x applies to both of them. Also important is that we don't overlap the homogeneous solutions, otherwise we'd need to multiply by t until it is linearly independent.
      As an example:
      y" + y = e^x * (6*cos(x) + 17*sin(x))
      While this may look like there is overlap, there really isn't. We'd have to have y" - 2*y' + 2*y = e^x * (6*cos(x) + 17*sin(x)), to have overlap, since the homogeneous solutions of this one, also include the exponential envelope on the trig functions.
      The homogeneous solution:
      yh = A*cos(x) + B*sin(x)
      The particular solution:
      yp = e^(x) * (C*cos(x) + D*sin(x))
      Differentiate twice:
      yp' = e^x * ((D - C)*sin(x) + (C + D)*cos(x))
      yp" = 2*e^x * (D*cos(x) - C*sin(x))
      Apply to original diffEQ, and equate coefs to find C & D:
      2*e^x * (D*cos(x) - C*sin(x)) + e^(x) * (C*cos(x) + D*sin(x)) = e^x * (6*cos(x) + 17*sin(x))
      Cancel common e^x factor:
      2* (D*cos(x) - C*sin(x)) + (C*cos(x) + D*sin(x)) = 6*cos(x) + 17*sin(x)
      Thus, equating coefs we get:
      2*D + C = 6
      -2*C + D = 17
      Solve for C & D:
      C = -28/5, D = 29/5.
      Thus the solution is:
      y = A*cos(x) + B*sin(x) + e^x*(-28/5*cos(x) + 29/5*sin(x))

  • @AndromedaIX
    @AndromedaIX 5 років тому

    You mentioned it was the superposition principle. Is it the same method as used for circuit analysis?

    • @carultch
      @carultch Рік тому

      It's a similar concept. Essentially, to simplify the equation, you break it up into two sub-equations that both also need to be satisfied, and work out how to satisfy both parts individually. And then form a solution that is a linear combination of the two.

  • @elnathanlynd5418
    @elnathanlynd5418 6 років тому

    Amazing

  • @robbiemayer3573
    @robbiemayer3573 3 роки тому

    the literal goat

  • @jonhsmith3745
    @jonhsmith3745 11 місяців тому

    banging video

  • @jacksantoro182
    @jacksantoro182 7 років тому

    thank you very helpful

  • @himanshubanate9061
    @himanshubanate9061 6 років тому

    nice sir thank u so much

  • @mastermfundisombhokane5731
    @mastermfundisombhokane5731 4 роки тому +1

    maVuti maths 3 where are you? send a shout out!

  • @strongerwithstubsstretch3472
    @strongerwithstubsstretch3472 4 роки тому

    thank you sir!

  • @sadam_sushi
    @sadam_sushi 5 років тому

    Thanks

  • @Dr.Reactor
    @Dr.Reactor 3 роки тому

    channel name: blackpenredpen
    Blue pen: Am I a joke to you??

  • @josemuygay8851
    @josemuygay8851 5 років тому

    thanks for uploading this!

  • @DawgFL
    @DawgFL 3 роки тому

    WHAT IS THE GUESS FOR A CONSTANT TO THE POWER OF X?? eg. 2 + 2^x

    • @carultch
      @carultch Рік тому

      Good question. If your term on the RHS of the original equation is 2^x, recognize that this is really the same family of functions as e^x, since it is also exponential. Therefore, the particular solution would involve linear combinations of 2^x, or alternatively, e^(ln(2)*x).

  • @michaelvivirito
    @michaelvivirito 4 роки тому

    Do you have any higher order examples?

    • @blackpenredpen
      @blackpenredpen  4 роки тому +2

      Like what order? I have a video on the 6th order with complex numbers

    • @michaelvivirito
      @michaelvivirito 4 роки тому +1

      blackpenredpen I feel like I’m taking to a celebrity. You are one of my favorite UA-camrs! I was thinking something like y’’’+8y’’+19y’+12y=270e^(2t)

    • @michaelvivirito
      @michaelvivirito 4 роки тому

      Also adding some initial conditions and getting the full y(t)

  • @hayatomcreverse7925
    @hayatomcreverse7925 7 років тому

    Bai maayo kayka this helps a lot T.T

  • @lesegomokgabudi5798
    @lesegomokgabudi5798 5 років тому

    thanks bro

  • @dmorgan0628
    @dmorgan0628 7 років тому +2

    I'm taking calc2 again this summer and diffeq this fall. This video is scary!

  • @sabikasarwat4186
    @sabikasarwat4186 3 роки тому

    What should be the method of solving this equation
    D2y/dt2 _ dy/dt _2y= 5 cosh(2t)....by undetermined method....kindly help plzzz

    • @carultch
      @carultch Рік тому

      Assuming your underscores mean +, we're given:
      y"(t) + y'(t) + 2*y = 5*cosh(2*t)
      You can use undetermined coefficients, since cosh is just a linear combination of two exponentials. I'll assume a particular ansatz, of a linear combination of cosh and sinh.
      First find the homogeneous solution:
      yh" + yh' + 2*yh = 0
      (r^2 + r + 2)*e^(r*t) = 0
      (r^2 + r + 2) = 0
      r = (-1 +/- sqrt(1 - 8))/2
      r = -1/2 +/- i*sqrt(7)/2
      Thus:
      yh = e^(-t/2) * (A*cos(t*sqrt(7)/2)) + B*sin(t*sqrt(7)/2)))
      For the particular solution:
      yp = C*cosh(2*t) + D*sin(2*t)
      Apply to original diffEQ, and match coefs:
      yp' = 2*C*sinh(2*t) + 2*D*cosh(2*t)
      yp" = 4*C*cosh(2*t) + 4*D*sinh(2*t)
      Thus:
      4*C*cosh(2*t) + 4*D*sinh(2*t) + 2*C*sinh(2*t) + 2*D*cosh(2*t) + 2*C*cosh(2*t) + 2*D*sinh(2*t) = 5*cosh(2*t)
      4*C + 2*D + 2*C = 5
      4*D + 2*C + 2*D = 0
      solution for C&D:
      C = 15/16, D = -5/16
      Thus, the solution is:
      y = e^(-t/2) * (A*cos(t*sqrt(7)/2)) + B*sin(t*sqrt(7)/2))) + 15/16*cosh(2*t) - 5/16*sinh(2*t)

  • @rubaiyamurshed9176
    @rubaiyamurshed9176 6 років тому

    if there is no sinx on the right side,but have "2+3x-e^2x" on the right side,what will happen?

    • @mlambo.n4411
      @mlambo.n4411 6 років тому

      linear and exponent function at the same time then evaluate them separately then sum up your solution y=y1+y2+y3 as your particular solution

  • @kevinmanuel9373
    @kevinmanuel9373 6 років тому

    I have a question. Shouldnt the Yp be te^t(sin t) ??

    • @jhazyloumonteza8985
      @jhazyloumonteza8985 5 років тому

      Yah. I'm confused too. Looks like it's a resonance case.

  • @bakkamanthulamohansai3430
    @bakkamanthulamohansai3430 2 роки тому

    Super super super

  • @AstroRoxy
    @AstroRoxy 7 років тому

    Thanks dude!