You probably haven't solved a square root equation like this before

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 142

  • @blackpenredpen
    @blackpenredpen  28 днів тому +32

    Solve sqrt(5-x)=5-x^2: ua-cam.com/video/BO1T7ebJlO8/v-deo.htmlsi=aG61fbzPAPJC6Dh3

    • @와우-m1y
      @와우-m1y 28 днів тому +2

      asnwer=-1 ! asnwer= 1 isit

    • @와우-m1y
      @와우-m1y 28 днів тому +1

      ans wer=1+-/5 /2 isit

    • @Pramod-y1g
      @Pramod-y1g 28 днів тому +2

      Bro I need help , I discovered a way to depict tan 90 as a finite value and I want some help in approximating the value using sums I used some square method and some patterns . How can I send u the proof. I wish if u can help me on this. How can I show it to u❤😢.

    • @ianfowler9340
      @ianfowler9340 22 дні тому

      @@와우-m1y sqrt means "square root". sqrt(4)=2

  • @ianfowler9340
    @ianfowler9340 28 днів тому +280

    This is the kind of stuff that really makes algebra and geometry just so much damn fun. We all know the connections are there, even when they not obvious. But when we actually see/discover one in action you just have to sit back and smile - it has an almost "magical" quality about it. Well done.

  • @MarieAnne.
    @MarieAnne. 28 днів тому +256

    Solution by squaring both sides
    x = √(x − 1/x) + √(1 − 1/x)
    First, we multiply both sides by √x
    x√x = √(x² − 1) + √(x − 1)
    Next we square both sides:
    x³ = (x² − 1) + (x − 1) + 2 √((x² − 1)(x − 1))
    (x³ − x² − x + 1) + 1 = 2 √(x³ − x² − x + 1)
    Use a substitution: u = √(x³ − x² − x + 1)
    u² + 1 = 2u
    u² − 2u + 1 = (u − 1)² = 0
    u = 1
    Substitute back
    √(x³ − x² − x + 1) = 1
    x³ − x² − x + 1 = 1
    x³ − x² − x = 0
    x (x² − x − 1) = 0
    x = 0, x = (1 ± √5) / 2
    From original equation, we can see that x ≠ 0, and x is not negative
    *x = (1 + √5) / 2 = φ*

    • @eyeswiideshut3289
      @eyeswiideshut3289 28 днів тому +10

      Is this code? Are yall aliens comunicating😂

    • @NevinBR
      @NevinBR 28 днів тому +34

      Perhaps slightly easier if you subtract √(1 - 1/x) from both sides at the very start:
      x - √(1 - 1/x) = √(x - 1/x)
      Square both sides:
      x² + 1 - 1/x - 2√(x² - x) = x - 1/x
      Bring everything over to the left side:
      x² - x + 1 - 2√(x² - x) = 0
      Let u = √(x² - x):
      u² + 1 - 2u = 0
      (u - 1)² = 0
      u = 1
      Substitute back into the definition of u:
      1 = √(x² - x)
      1 = x² - x
      x² - x - 1 = 0

    • @NotGleSki
      @NotGleSki 28 днів тому +17

      @@eyeswiideshut3289not a flex that you can’t do basic algebra I mean the thought of a 12 year old being smarter then me is terrifying but ig it’s comforting for someone like you

    • @marilynman
      @marilynman 28 днів тому +1

      The interesting thing about the function
      f(x) = sqrt(x - 1 / x) + sqrt(1 - 1 / x) - x
      is that considering the part sqrt(x - 1 / x) has zeros in x = +-1 but is asymptotic at x = 0 so the domain is [-1,0)U[1,∞).
      The other part sqrt(1 - 1 / x) has zeros at x = 1 and it's also asymptotic at x = 0 so the domain is (-∞,0)U[1,∞) and the domain of x is (-∞,∞).
      So the domain of the entire function is [-1,0)U[1,∞)

    • @Sandpepe
      @Sandpepe 27 днів тому

      ​@@NotGleSkithe same people will join a cult and start movements against science

  • @Mathematiker_KV
    @Mathematiker_KV 28 днів тому +33

    Method without squaring:
    x = √(x − 1/x) + √(1 − 1/x)
    Taking reciprocals on both sides and multiplying by the conjugate on the RHS simplifies to:
    1/x = [ √(x − 1/x) - √(1 − 1/x) ] / (x-1)
    So:
    1 - 1/x = √(x − 1/x) - √(1 − 1/x)
    Adding to the original equation:
    2√(x − 1/x) = x - 1/x + 1
    Setting X = x - 1/x and solving the quadratic yields:
    X = 1
    x - 1/x = 1
    Solve to get x = (1 + √5) / 2 since x > 0

  • @daminkon246
    @daminkon246 28 днів тому +115

    Checking for the 90 degrees using the area of the triangle, man, i never would have thought about that. Such a nice equation, thank you.

    • @ingiford175
      @ingiford175 27 днів тому +2

      Had the same thought, but its lovely once you seen it once.

    • @conanedojawa4538
      @conanedojawa4538 25 днів тому +1

      ​@@ingiford175
      What about inverse Pythagorean theorem?

    • @BrianGriffin83
      @BrianGriffin83 23 дні тому

      Me neither. I was struggling to prove it, and the answer was right in front of my nose. And even after I saw the video I was still wrapping my mind around it.
      Maybe the most rigorous way to write it down would be to call a the angle in question and write 1/2*1*√x*sin(a) on the right side of the equation, then solve for a.

    • @alex_schwartz
      @alex_schwartz 23 дні тому +1

      Another way of proving it is equal to 90 degrees:
      sin(a+b)=...=x/x = 1 where a+b add up to that angle

  • @MikeGz92
    @MikeGz92 28 днів тому +19

    To check if the triangle is rectangular, I think the best way that the triangle on the right is similar to the biggest triangle ( 1/sqrt(x) : 1 = 1 : sqrt(x) )

    • @thatapollo7773
      @thatapollo7773 22 дні тому +4

      i agree

    • @syther836
      @syther836 16 днів тому +1

      it can be a way, but theres nothing "best" here

  • @tanishq_xin
    @tanishq_xin 28 днів тому +19

    That was such an intriguing way to solve it! Thanks a lot again!!

  • @sternli728
    @sternli728 28 днів тому +34

    4:58
    "I will keep this on the right hand side [...], but i'm gonna put it on the left" ~ blackpenredpen, 2024 😂

  • @davidchung1697
    @davidchung1697 20 днів тому +6

    Actually, you can square both sides. This leads to a big expression BUT then you can make the substitution y = x^3 - x^2 - x + 1. This quickly yields y = 1 as the only solution. That means 1 = X^3 - x^2 - x + 1, which leads to the same equation solved in the video.

  • @shantanudhiman8194
    @shantanudhiman8194 26 днів тому +3

    This was a delight to watch.
    These neat tricks are the essence of solving math problems. Trying to develop this kind of approach now.

  • @HenriLaporte-kv6qq
    @HenriLaporte-kv6qq 17 днів тому +1

    We can multiply by put a = sqrt(x-1/x) and b = sqrt(1-1/x). So x = a + b.
    Multiply the equation by a - b gives x-1/x = a - b, because (a + b)*(a - b) = x - 1.
    Substract the second to the first gives 1/x = 2b = 2sqrt(1-1/x) or (1/x+1)^2 = 5

  • @chrischappa962
    @chrischappa962 14 днів тому +1

    Reverse engineering the area formula to verify perpendicular sides is unexpected yet beautiful. Makes me think this problem was specifically designed for that.

  • @snejpu2508
    @snejpu2508 28 днів тому +4

    After squaring both sides, -1/x cancels out on both sides and we can write the equation as 2x*sqrt(1-1/x)=x^2-x+1. Then we can square both sides again and get 4x^2-4x=(x^2-x+1)^2. Now we can substitute t=x^2-x and we get 4t=(t+1)^2, 4t=t^2+2t+1, t^2-2t+1=0, (t-1)^2=0, t=1, x^2-x=1, x^2-x-1=0. After solving the quadratic we get the same solution.

  • @orangee_blox
    @orangee_blox 28 днів тому +12

    this is the second time youve made a video about using triangles to solve equations and i love it

  • @Wakrar
    @Wakrar 28 днів тому +3

    For checking if the angle is 90°, it would probably me more adequate to write the are formula as a.b.sin(t)/2, and then verifying that sin(t)=1. But that aside, super neat resolution

  • @shannonmcdonald7584
    @shannonmcdonald7584 28 днів тому +4

    I like this one so much i watched it twice. Very nice.

  • @mcalkis5771
    @mcalkis5771 7 днів тому

    I love how the videos lately have been about clever tricks to avoid using calculus. Really love it.

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 18 днів тому

    Good tecnique!
    Now, I will make a little mental exercise here: (just for curiosity)
    n=(x-(1/x))½
    n²+b²=a² or
    n²= a²-b²
    n²=a²-b²
    x-(1/x)=a²-b²
    (x½)² - (1/x½)² = a²-b²
    consider that way
    => a=x½ and b=1/x½
    m=(1-(1/x))½
    m²+c²=d²
    m²=d²-c²
    1-(1/x)=d²-c²
    the same for m,c,d:
    Then, c=1/x½ and d=1
    Note: b=c; (we'll make h= b=c)
    And we will considered only the positive values for a,b,c,d.
    x=n+m
    x²=n²+2mn+m²
    => x² = (a²-b²) + 2(a²-b²)½(d²-c²)½ + (d²-c²)
    => x² = (a²+d²) - (2h²)+2[a²d²-a²h²-d²h²+h⁴]½
    make H²=a²+d²
    => x² = H²-2h²+2[a²d²-H²h²+h⁴]½
    => x²-H²=-2h²+2[(ad)²-(Hh)²+h⁴]½
    make A=Hh/2 and S=ad/2
    => x²-H²=-2h²+2[(2S)²-(2A)²+h⁴]½
    supose S=A
    //////////////////////////////////////////////////
    If, S=A {then, Hh=ad => H²h²=a²d²=> (a²+d²)h²=a²d² => (1/d²)+(1/a²) =(1/h²) => 1+(1/x)=x => (x+1)/x=x => x²= x+1 => x = (x+1)½
    but, x=n+m
    => n²+2mn+m²=x+1
    => x-(1/x)+2mn+1-(1/x)=x+1
    => 2mn=2/x
    => mn = 1/x
    => m²n²= 1/x²
    => [1-(1/x)][x-(1/x)] = 1/x²
    => x-(1/x)-1+(1/x²) = 1/x²
    => x-(1/x)-1=0
    => x-1= 1/x; x ≠ 0
    => x² -x -1 = 0
    => x= ф or x= [1-(5½)]/2
    That means the veracity of our supose imply that x must be equal these values to the next equation be true.
    ///////////////////////////////////////////////////
    next => x²-H²=-2h²+2[h⁴]½
    => x²-H²=-2h²+2h²
    => x²-H²=0
    So, if A=S, then:
    => x²=H²
    but, H²=a²+d²
    => H²=(x½)²+(1)²
    => H²=1+x
    => x²=H²
    => x²=(1+x)
    => x²-x-1=0
    => x=ф or x=[1-(5½)]/2
    Considering x > 0, then:
    => x = ф
    The solutions are the same, therefore the method used to solve it is true. 😊

  • @seanoneill2098
    @seanoneill2098 24 дні тому +1

    Beautiful stuff. Thank you for sharing.

  • @darkfool2000
    @darkfool2000 17 днів тому

    Honestly, that's beautiful, you take a complicated equation and reduce it to something simple.

  • @АртемХапилов-г2ф
    @АртемХапилов-г2ф 28 днів тому +1

    Wanted to check if there are other roots because after squaring two times an equation, we would have 6th degree polynomial. But there are 2 x=0 roots and equation simplified to (x^2-x-1)^2=0. So then the answer is correct, yeah, thanks for the cool solution!

  • @paulortega5317
    @paulortega5317 22 дні тому +3

    Great approach! I used:
    let u = (x - 1/x) and v = (1 - 1/x)
    ❶ (√u + √v) = x
    (√u + √v)(√u - √v) = x(√u - √v)
    (u - v) = x(√u - √v)
    (x - 1) = x(√u - √v)
    (√u - √v) = (x - 1)/x
    (√u - √v) = 1 - 1/x
    ❷ (√u - √v) = v
    add ❶ & ❷together:
    ❶ (√u + √v) = x
    ❷ (√u - √v) = v
    2√u = x + v
    2√u = x + 1 - 1/x
    2√u = x - 1/x + 1
    2√u = u + 1
    u - 2√u + 1 = 0
    (√u - 1)² = 0
    u = 1
    x - 1/x = 1
    x² - x - 1 = 0
    x = (1 ± √5)/2, but x > 0
    x = (1 + √5)/2

  • @boonweichow7482
    @boonweichow7482 14 днів тому

    Multiply both sides of sqrt(x-1/x) + sqrt(1-1/x) = x by sqrt(x-1/x) - sqrt(1-1/x). Use difference of squares to simplify and then divide by x on both sides to get sqrt(x-1/x) + sqrt(1-1/x) = 1-1/x. Add this to the original equation to get 2sqrt(x-1/x) = x-1/x+1. Set u=x-1/x to get 2sqrt(u) = u + 1. This is the same as (sqrt(u)-1)^2=0. So x-1/x=u=1. Therefore, we have x^2-x-1=0. This has roots (1 +sqrt(5)) /2 and (1-sqrt(5))/2. Reject negative x since the original equation tells us that x is nonnegative.

  • @rana1561
    @rana1561 19 днів тому

    You don't need to check a lot to verify the top angle of the big triangle, simply notice that the sum of the rest of the 2 angles of the big triangle is 90 degrees, so the top angle definitely will be 90°.

  • @bain8renn
    @bain8renn 28 днів тому +1

    very interesting problem, always very cool when problem-solving involve using geometric intuition, even when its not a geometric problem in the first place!!! pretty cool :3

  • @indefinite115
    @indefinite115 28 днів тому +1

    You're an inspiration!

  • @RashmiRay-c1y
    @RashmiRay-c1y 12 днів тому

    Let (x-1/x)^1/2=a and (1-1/x)^1/.2=b. Then, a+b=x and a^2-b^2=x-1. So, a-b=1-1/x. Thus, 2a=1+x-1/x=1+a^2. So, a=1, i.e., x-1/x=1 and so x=1/2[√5+1], as x is positive.

  • @g0rgth3b0rg
    @g0rgth3b0rg 25 днів тому +1

    I like the triangle solution.

  • @mooncowtube
    @mooncowtube 5 годин тому

    This is certainly very neat. However, at 2:00 you are implicitly assuming that x>1, because otherwise you could not form that triangle. Now, there aren't any solutions with x

  • @SpaceUA1
    @SpaceUA1 25 днів тому +1

    Please do the limit as x -> inf of Γ(x)/subfactorial(n-1) 🙏

  • @SidneiMV
    @SidneiMV 26 днів тому

    Simply awesome!!

  • @ben_adel3437
    @ben_adel3437 20 днів тому

    I used sin theorem to find that the angle is 90 i called the angle between 1and sqrt(1-1/x) a that made the one thats on the other side 90-a and did the same with the other side so i got 90-b then said that sin(180-a-b)/x is gonna equal sina/sqrt(x) then just found sina which was 1/sqrt(x) so when you substitute it'll be 1/sqrt(x) times 1/sqrt(x)= sin(180-a-b)/x so 1/x= sin(180-a-b)/x so sin(180-a-b)=1 meaning sin(a+b) is 1 and since both of these angles are smaller than 90 their addition must just be 90 😊

  • @happy.5
    @happy.5 28 днів тому +3

    That's the first thing (GOLDEN RATIO ) come in my mind

  • @daniel_77.
    @daniel_77. 28 днів тому +9

    "Asked 11 years ago" lol you're late

  • @pietergeerkens6324
    @pietergeerkens6324 28 днів тому +1

    I definitely DID want to square both sides; as this gave me first
    x² = x - 1/x + 1 - 1/x + 2√[ x - 1 - 1/x + 1/x² ]
    and then, multiplying through by x and rearranging,
    x³ - x² - x + 2 = 2√[x³ - x² - x + 1].
    The latter is easily reorganized as just
    (√[x³ - x² - x + 1] - 1)² = 0,
    hence
    √[x³ - x² - x + 1] - 1 = 0.
    and
    x³ - x² - x + 1 = 1
    to yield
    x² - x - 1 = 0
    since x = 0 is forbidden in the original presentation.
    This of course has the well known roots φ and 1/φ, only the first satisfying the original presentation.

  • @inuyasha5521
    @inuyasha5521 28 днів тому +1

    It's very creative. awesome!

  • @learnscience1250
    @learnscience1250 28 днів тому +1

    Helpful, Thanks you sir.

  • @kaz7953
    @kaz7953 25 днів тому

    When I saw the thumbnail, I thought this equation was an unexpected identity lol

  • @homewasus
    @homewasus 28 днів тому +1

    Life saver!

  • @bizikimiz6003
    @bizikimiz6003 18 днів тому

    So if c,d,e>0 then SQRT(ec/d)x = SQRT(cx-d/x) + SQRT(e-d/x) should solve the same way giving x = (d/e + SQRT(d^2/e^2 + 4c/d))/2, right?

  • @marktikhonov8495
    @marktikhonov8495 27 днів тому

    Question:
    You are relying on a conjecture that if product of two sides of a triangle a and b is a*b=0.5 * A where A is the area of the rectangle implies that the triangle is a right triangle, but is it really the case? I mean that certainly seems logical, but I have never seen this as a statement.

    • @angel-ig
      @angel-ig 26 днів тому +1

      The area is ½ab*sin(C), and if sin(C) = 1, then C = 90°

    • @marktikhonov8495
      @marktikhonov8495 26 днів тому +1

      @angel-ig good catch

  • @YourFriendlyAlan
    @YourFriendlyAlan 23 дні тому

    Alright, that was pretty clever!

  • @barryzeeberg3672
    @barryzeeberg3672 28 днів тому

    Can this be generalized by seeing if there are other combinations of expressions that work out this way, or is this the only one that works? Are there other expressions that make the combined angle into a right angle?

  • @Viki13
    @Viki13 27 днів тому

    cool solution!

  • @rakib_hoque
    @rakib_hoque 25 днів тому

    lim (ln(x)-W(x)) ,x→♾️
    W(x) is the Lambert W function please do this limit 🙏

  • @DMichigan
    @DMichigan 26 днів тому

    That's so cool!

  • @Ramp4ge28
    @Ramp4ge28 21 день тому

    I allways think every problem with phi as the solution is a good problem

  •  22 дні тому

    Amazing method 😅😅😅😊😊😊

  • @anshajtripathi47
    @anshajtripathi47 15 днів тому

    What about doing this with the trigonometry

  • @Davics02
    @Davics02 25 днів тому

    Hello bprp, how can I evaluate this integral
    (2xsin(x))/(3+cos(2x)).dx from 0 to pi. ?

  • @ThoronSage
    @ThoronSage 16 днів тому

    Me, an engineering student: ITERATIVE METHOD, GO!

  • @Masteg.
    @Masteg. 28 днів тому

    is it possibe to solve sqrt(x^2-1)+sqrt(x-1)

  • @richardfredlund8846
    @richardfredlund8846 28 днів тому

    can you solve x^3 - 3x = A^3+ 1/A^3 where A = (x + - sqrt(x^2 - 4)) /2 ? answer this is true for all x in the reals although if you plot the r.h.s you will only get the tails on desmos because the intermediate values are complex in the range (-2,2)

  • @herbie_the_hillbillie_goat
    @herbie_the_hillbillie_goat 26 днів тому

    I always get so confused when he breaks out the dreaded BLUE pen. 😁

  • @fabianortiz4200
    @fabianortiz4200 24 дні тому

    hey! I've been stuck on this equation I made up when I was bored, 10^x = x^2 I
    tried taking the natural logarithm of both sides but I can't seem to solve it can you help?

  • @penguincute3564
    @penguincute3564 28 днів тому +3

    By similar triangles, that angle is 90° by default lol.

    • @beansprugget2505
      @beansprugget2505 28 днів тому

      Can you elaborate?

    • @trueriver1950
      @trueriver1950 28 днів тому

      ​​​ yeah, but how do you know the triangles are similar?
      (You are right that they are, but tell me how you know they are)
      The method shown was to compute the area two ways, which seems to me quicker than any geometric argument that says that all three triangles are similar.

    • @CMANIZABALLER
      @CMANIZABALLER 17 днів тому

      @@trueriver1950don’t overthink it. Your low IQ is showing

  • @JayFang-i6p
    @JayFang-i6p 25 днів тому

    "x is so much cuter compared to that right" 🤣

  • @huyminhha658
    @huyminhha658 16 днів тому

    let sqrt(x-1/x)=a, sqrt(1-1/x)=b ( a,b>0 or a,b are not real number (ig) )
    then a²-b²=x-1/x-(1-1/x)=x-1
    and a+b=x
    which is urghh same

  • @eyeswiideshut3289
    @eyeswiideshut3289 28 днів тому

    *reads half of title*
    ILLUMINATUS COMFIRMED

  • @oneshot7456
    @oneshot7456 28 днів тому +2

    I had an AP maths exam today and one question asked to find the other factor of a quintic equation for 7 marks. I would have had no idea how to do it had I not watched this guy. Got the idea to brute force it and solve for each coefficient of x individually from one of your videos. You’re a life saver bro!

    • @user-db4lk7yg3o
      @user-db4lk7yg3o 27 днів тому

      what ap class is making you factor a quintic?

  • @proguyz78
    @proguyz78 28 днів тому

    Golden

  • @medaliberrada8285
    @medaliberrada8285 26 днів тому

    can someone explain how we know the topvangle is 90 degrees

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 25 днів тому +1

      We calculate the area of triangle ABC in two different ways. The first is [ABC]=(AB*AC*sinA)/2=(1*√x*sinA)/2=(√x*sinA)/2. The second is [ABC]=(BC*AH)/2=(x*1/√x)/2=√x/2 where AH is the height. Comparing the two methods, we find that sinA=1, so A=90°.

  • @FireStormOOO_
    @FireStormOOO_ 28 днів тому

    That's a clever solve - can't just do "algebra autopilot".

  • @archangecamilien1879
    @archangecamilien1879 22 дні тому

    Squaring both sides is my automatic reflex, lol, but the title of the video seems to discourage that...but, squaring both sides, would create only one radical, then put it alone on one side and square both sides again, lol, and then keeping track of what had been done the problem should be easy to solve...as for without doing that, lol, hmm...

  • @DuyThanh-ff7dl
    @DuyThanh-ff7dl 24 дні тому +1

    Bruh 11 yrs ago how did you find this

  • @cdkw2
    @cdkw2 28 днів тому

    omg how do people think of these!?!?!

  • @Eichro
    @Eichro 28 днів тому +29

    Isn't it dumb luck that the (x - sqrt(x) - 1) triangle turned out to be right? You replace that 1 with a 2 and the whole trick falls apart.

    • @Kishblockpro
      @Kishblockpro 28 днів тому +3

      yes

    • @ethohalfslab
      @ethohalfslab 28 днів тому +9

      Yep. It works simply because it's the golden ratio.

    • @JDO-u5f
      @JDO-u5f 28 днів тому

      No. That’s not a coincidence. That is, because it was set up that way. Simple as that.

    • @CMANIZABALLER
      @CMANIZABALLER 17 днів тому

      Bad logic

    • @kay5718
      @kay5718 17 днів тому

      Then you would use the sine area formula and cosine theorem instead of the pythagorean theorem, it would require trigonometry knowledge though, and that angle being 90 degrees makes it easier for viewers

  • @jwangosho
    @jwangosho 27 днів тому

    ChatGPT is struggling with it

  • @scottleung9587
    @scottleung9587 28 днів тому

    Cool!

  • @captnmaico6776
    @captnmaico6776 28 днів тому

    so cool

  • @thegamingdino_
    @thegamingdino_ 4 дні тому

    I didn't understand why x cannot be negative.

    • @hafizusamabhutta
      @hafizusamabhutta 3 дні тому

      In the original question, x is equal to the sum of two square roots which can never be negative so x can neither.

  • @MIIIM-7
    @MIIIM-7 25 днів тому

    1.618

  • @Traw-ve7qf
    @Traw-ve7qf 26 днів тому

    how to focus in Math

  • @Pramod-y1g
    @Pramod-y1g 28 днів тому

    Bro I need help , I discovered a way to depict tan 90 as a finite value and I want some help in approximating the value using sums I used some square method and some patterns . How can I send u the proof. I wish if u can help me on this. How can I show it to u❤😢

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 28 днів тому +2

      "I discovered a way to depict tan 90 as a finite value"
      That makes no sense. Using the _definition_ of tan, it's easy to see that no such finite value exists. I. e. your calculation obviously is wrong somewhere.

    • @Theraot
      @Theraot 28 днів тому +1

      My guess is that you found an infinite sume that in the limit should converge to tan 90, except it does not converge.

  • @cikcik1234
    @cikcik1234 20 днів тому

    I don't think big triangle is a right triangle, the product of red and blue parts must be equal to 1/x.

  • @SurendraReddy-ey5wv
    @SurendraReddy-ey5wv 28 днів тому

    Nice

  • @cuongvd
    @cuongvd 27 днів тому

    blackpenredpenbluepen

  • @papakwamekuttin2978
    @papakwamekuttin2978 27 днів тому

    It's always the golden ratio😪

  • @martinphipps2
    @martinphipps2 17 днів тому

    sqrt(x - 1/x) + sqrt(1 - 1/x) = x
    so x - 2/x + 2sqrt[(x-1/x)(1-1/x)] + 1 = x^2
    so 2sqrt[x - 1 - 1/x + 1/x^2] = x^2 - x - 1 + 2/x
    so 4x - 4 - 4/x + 4/x^2 = x^4 - x^3 - x^2 + 2x - x^3 + x^2 + x - 2 - x^2 + x + 1 - 2/x + 2x - 2 - 2/x + 4/x^2
    so 4x - 4 - 4/x + 4/x^2 = x^4 - 2x^3 - x^2 + 6x - 3 - 4/x + 4/x^2
    so x^4 - 2x^3 - x^2 + 2x + 1 = 0
    so (x^2 - x - 1)^2 = 0
    so x = (1+sqrt5)/2

  • @emontrailers
    @emontrailers 28 днів тому

  • @SigfriedNothung
    @SigfriedNothung 28 днів тому

    😄

  • @6310-c5h
    @6310-c5h 26 днів тому

    охренеть.
    лайк!

  • @yukfaicheung7484
    @yukfaicheung7484 21 день тому

    I will find god

  • @nyclegendz4665
    @nyclegendz4665 28 днів тому

    Second comment daddy ❤
    Always love for u 💗

  • @gabest4
    @gabest4 28 днів тому

    The golden ratio? What are the chances? I think this equation was rigged.

  • @pue0
    @pue0 28 днів тому

    i didnt asked

    • @endersteph
      @endersteph 28 днів тому

      *ask

    • @pue0
      @pue0 28 днів тому

      @@endersteph i didnt asked

  • @rattyoman
    @rattyoman 24 дні тому

    hellow, im somewhat curious about something and haven't found anything about it;
    what is the relation between a sine wave and a circular wave (as in, a wave made from opposing semicircles)? I know sine and cosine can form a circle together, and that they're closely related to π, so I'm curious how relevant that is to a circular wave.

  • @yogeshkumar69693
    @yogeshkumar69693 24 дні тому +1

    think that the domain of this equation must be
    x ∈ R-{0}