Where is this math contest from?

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 66

  • @mmaxio
    @mmaxio 3 роки тому +69

    Saint Petersburg Lyceum 239 is one of (if not the) best math school in Russia. Grigori Perelman went there for example.

    • @t39an8r
      @t39an8r 3 роки тому +3

      One could say it produced the greatest math mind of the Millennium

  • @DarGViD
    @DarGViD 3 роки тому +60

    239 is the number of the best russian math school (Fields laureates Grigori Perelman and Stanislav Smirnov are from there). This problem is from their annual open math olympiad.

    • @thwartificer
      @thwartificer 3 роки тому +2

      239 is a number of the devil
      this post was made by PML 30 gang

  • @Difendrion
    @Difendrion 3 роки тому +61

    I think in 'Case 3' you could have gotten b=p+1 "easier" out of the equation p^2=m*(b-1), knowing that in 'Case 3' m=p.

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +29

    7:50

    • @benji0054
      @benji0054 3 роки тому

      Good place to stop

    • @t39an8r
      @t39an8r 3 роки тому

      Loved your (Michael Penn)^9 so much, I'd look forward to every "Good Place To Stop" combined, although that's a crazy idea

    • @goodplacetostop2973
      @goodplacetostop2973 3 роки тому +2

      @@t39an8r Thank you, I’m lacking of ideas for a new video but once I get a very good one, I’ll go very fast to do it

  • @adityaekbote8498
    @adityaekbote8498 3 роки тому +32

    239 is a prime

    • @idjles
      @idjles 3 роки тому +2

      I’m just amazed that a number theory professor didn’t know every prime

    • @Sam_on_YouTube
      @Sam_on_YouTube 3 роки тому +1

      I figured that out in my head. It was easier than the problem he was doing.

    • @Nnm26
      @Nnm26 3 роки тому +7

      @@idjles an intellegent man never do useless things

  • @manucitomx
    @manucitomx 3 роки тому +5

    What a nice problem.
    I usually shy away from number theory, but you are making me like it.
    Thank you, professor!

  • @amitsrivastava1934
    @amitsrivastava1934 3 роки тому

    Very elegantly done. Many thanks for this wonderful problem.

  • @Tiqerboy
    @Tiqerboy 3 роки тому +2

    if a+b is a perfect square, one of the primes that satisfy this expression is a Mersenne prime where a is 2x the perfect number associated with that Mersenne prime and b - 1 = Mersenne Prime. For example a = 56, b = 8. Other primes work, for example b = 6, a = 30, therefore p = 5.

  • @kristianwichmann9996
    @kristianwichmann9996 3 роки тому +10

    It's a prime, and a twin prime to boot.

  • @5000jaap
    @5000jaap 3 роки тому +1

    1:16 so 0 is not a natural number ? i thought that all non negative numbers were natural

  • @kylecow1930
    @kylecow1930 Рік тому

    case 3, we have that m=p so m(b-1)=p^2 means that b-1 = p so b = p+1, a = p^2+p so a+b=p^2+2p+1 = (p+1)^2

  • @Bodyknock
    @Bodyknock 3 роки тому +1

    Quick minor point, if like me you define the Naturals as including 0, then the hypothesis still holds for b=0. i.e. a + 0 = 0(b - c) = 0 so a = 0, and therefore ab = 0 which is a perfect square.

    • @pietergeerkens6324
      @pietergeerkens6324 3 роки тому

      North American standard pedagogy defines N as 1, 2, 3, ... } and W, the set of Whole Numbers, is N + {0}.
      British pedagogy and many number theoriticians have different preferences - but as a North American professor Prof. Penn is reasonable to conform to N.A. pedagogy.

    • @Bodyknock
      @Bodyknock 3 роки тому

      @@pietergeerkens6324 I didn't say he's "unreasonable". I said "if like me you include 0...."
      But like you said, not everybody defines the Natural Numbers starting at 1. The ISO for example uses 0 in its definition, as do most people working in set theory. There is no official standard that North American mathematicians comport to 0 being excluded, though. (In fact, all my college professors started it at 0, probably based on their backgrounds in set theory and combinatorics.)

  • @sharpmind2869
    @sharpmind2869 3 роки тому +7

    I am feeling proud after solving this problem. Though it was a easy one . Number theory is my strong point.😊😊😊😎😎

  • @mithutamang3888
    @mithutamang3888 3 роки тому +1

    Why find the value of a, b, c and p is a prime we get the ab and a+b are both perfect square?

  • @satoruhonda5230
    @satoruhonda5230 3 роки тому

    for case 3, m=p and we have p=b-1 as well
    a=bp=b(b-1)
    a+b=b^2. done

  • @armacham
    @armacham 3 роки тому

    3:27 shouldn't you also consider m=-1, m=-p, and m=-pp? It's trivial to rule them out, of course, because a/b = m > 0. But shouldn't you consider it?

    • @mrstruggle2846
      @mrstruggle2846 3 роки тому

      The question states that we are working with natural numbers, so I don’t think we have to.

  • @idjles
    @idjles 3 роки тому

    Fascinatingly contrived problem.

    • @Ryan_Thompson
      @Ryan_Thompson 3 роки тому

      Elegant summation of number theory.

  • @adityatripathy1201
    @adityatripathy1201 3 роки тому +2

    St.Petersburg

  • @sheafsmash142
    @sheafsmash142 3 роки тому

    I like when he says "and that's a good place todo stop"

  • @emanuellandeholm5657
    @emanuellandeholm5657 3 роки тому

    239 is indeed a special integer because pi/4 = 4 arctan 1/5 - arctan 1/239.
    See en.wikipedia.org/wiki/Machin-like_formula

  • @yoav613
    @yoav613 3 роки тому

    And sometimes they can be both perfect square like when a=b=50 and c=48

  • @malignusvonbottershnike563
    @malignusvonbottershnike563 3 роки тому +1

    I actually did a problem! A nice problem, but I'll take it nonetheless lol

  • @rafael7696
    @rafael7696 3 роки тому

    Very nice

  • @athoshipner6847
    @athoshipner6847 3 роки тому

    Big Michael Penn..

  • @canbastemir2122
    @canbastemir2122 3 роки тому

    Nice problem

  • @jiyoungpark6233
    @jiyoungpark6233 3 роки тому

    oh, i failed to find out where it came from, but thank you, the problem was so useful😊😊😊

  • @premtiwary1845
    @premtiwary1845 3 роки тому

    Sir can You discuss paper of ISI entrance held today

  • @t39an8r
    @t39an8r 3 роки тому

    Random and unrelated, c seems to be a multiple of 24?

    • @Jason4195
      @Jason4195 3 роки тому +1

      Yes! This is the way I like to think of it:
      For p >= 5, p^2 can be written as 24n + k, when n is a positive integer and k is a positive integer between 0 and 23.
      k must be 1,5,7,11,13,17,19, or 23, otherwise 24n + k would be divisible by some number other than 1 or p, making p not prime.
      Notice that 1*1 = 1, 5*5 = 25 = 24 + 1, 7*7 = 49 = 24(2) + 1, ... , 23 * 23 = 529 = 24(22) + 1.
      Since k must be 1,5,7,11,13,17,19, or 23, and since each one of these is one more than a multiple of 24, k must be one more than a multiple of 24.
      Then k = 24t + 1. k is less than 24, so t = 0. Then k = 1.
      We see that p^2 is one more than a multiple of 24.
      So c = p^2 - 1 = (24n + 1) - 1 = 24n.
      This is even easier to see if you're familiar with congruence classes modulo 24.

  • @theevilmathematician
    @theevilmathematician 3 роки тому

    239 is a prime number.

  • @rudranarayanswain2382
    @rudranarayanswain2382 3 роки тому +1

    Nice..

  • @curiosityxxx4305
    @curiosityxxx4305 3 роки тому

    SOS! SOS! SOS! SOS! Derivative of (cos inverse x /x) using first principle. I got stuck in too many terms.

  • @adityaekbote8498
    @adityaekbote8498 3 роки тому +1

    Noice I would love to know the source

  • @sayammahajan4
    @sayammahajan4 3 роки тому +4

    Yes 239 is a prime as it gives -1 as remainder when divided by 6

    • @MushookieMan
      @MushookieMan 3 роки тому +3

      That is a property of primes, but not only primes. You accidentally used the converse of a statement.

    • @blazedinfernape886
      @blazedinfernape886 3 роки тому

      If it was that simple to know whether a number is prime or not then we wouldn't have so many theorems to predict the pattern of primes?

  • @GaneshKumar-vh6ts
    @GaneshKumar-vh6ts 3 роки тому

    Very nice proof
    "That's the nice place to stop",common sentence used in every video

    • @Grizzly01
      @Grizzly01 3 роки тому

      Well done for spotting that
      /s

  • @mithutamang3888
    @mithutamang3888 3 роки тому +2

    So, 60 is a prime!!! 😁😁👍👍

    • @BlackTigerClaws
      @BlackTigerClaws 3 роки тому +2

      You must be thinking of 57 😉

    • @mithutamang3888
      @mithutamang3888 3 роки тому +2

      @@BlackTigerClaws Ok good, the perfect square is ab and a+b are both perfect squares for the evaluate value and the answer is not prime!!! 😁😁👍👍

    • @particleonazock2246
      @particleonazock2246 3 роки тому +3

      @@BlackTigerClaws If Grothendieck says it's prime, it's ok for me.

    • @mithutamang3888
      @mithutamang3888 3 роки тому +1

      OK

  • @hoangnguyennguyen6445
    @hoangnguyennguyen6445 3 роки тому

    pee pee