How exciting is this integral?

Поділитися
Вставка
  • Опубліковано 18 січ 2025

КОМЕНТАРІ • 108

  • @chrisdehaer1
    @chrisdehaer1 3 роки тому +44

    Such a great problem. I'm going to show my students when we return from holidays

  • @noumanegaou3227
    @noumanegaou3227 3 роки тому +21

    We can Use fact ln(1/t) = -ln(t)
    For simplicity

    • @DrTaunu
      @DrTaunu 3 роки тому +7

      If you don't mind the (-1)^k factor that is. That is a mosquito in an integration problem.

    • @xCorvus7x
      @xCorvus7x 3 роки тому +2

      Kind of weird how this implies that part of the function flips around the x-axis for n of different parity.
      Though, since log(t) is negative between 0 and 1 it doesn't matter: the additional minus simply cancels out the negativity of the logarithm for odd n.

  • @txikitofandango
    @txikitofandango 3 роки тому +14

    HA! I knew you'd leave that limit as homework.
    Rewrite t(ln 1/t)^(k+1) as (ln 1/t)^(k+1) / (1/t)
    Substitute u = 1/t. Now the limit goes to infinity
    lim as u->infinity of (ln u)^(k+1) / u
    Do L'Hopital's Rule
    lim as u-> infinity of (k+1)(ln u)^k * 1/u in the numerator and 1 in the denominator = (k+1)(ln u)^k / u. Very similar to the original limit, just with an extra factor and a reduced exponent.
    Keep applying this formula until the exponent is reduced to 1. You'll have the limit as u->inf of (k+1)! (ln u) / u. Apply L'Hopital one more time to get 0.

  • @larryeifler2994
    @larryeifler2994 3 роки тому +2

    You should have a video on the Laplace transform. Often parts of the solutions to integral problems that you do reduce to Laplace transforms.

  • @manuel3494
    @manuel3494 3 роки тому +47

    Can this serve as an alternative definition of gamma(z+1) ? Or is there something in complex analysis that would make the two integrals different?

    • @davidbizzozero3458
      @davidbizzozero3458 3 роки тому +22

      The integral is equivalent to the traditional gamma(z+1) definition since it was just a substitution that transforms one into the other (x = ln(1/t) as in the 2nd part of the video).

    • @wisdomokoro8898
      @wisdomokoro8898 3 роки тому +3

      I thought of that too . The Traditional Gamma function

    • @Nathan511
      @Nathan511 3 роки тому

      I believe neither integral is defined for Re(z)

  • @marceloferreira7412
    @marceloferreira7412 3 роки тому +4

    Amazing as always, thanks Michael!

  • @manucitomx
    @manucitomx 3 роки тому +3

    What a great and clear problem!
    Thank you, professor!

  • @holyshit922
    @holyshit922 2 роки тому

    We can have Gamma function after substitution
    or reduction after integration by parts
    9:16 Re(a+1) > 0

  • @sergpodolnii3962
    @sergpodolnii3962 3 роки тому +4

    Hi Michael. With this video you remained about one fascinating topic - fractional integration. Maybe some video/videos on this? Just a suggestion.

  • @maxsch.6555
    @maxsch.6555 3 роки тому +1

    Just let I(t) = ∫₀¹ (1/x)^t dx = 1/(1-t).
    Differentiating n times under the integral sign gives Dⁿ I(t) = ∫₀¹ (ln(1/x))^n (1/x)^t dx. Normal differentiation gives us Dⁿ I(t) = Dⁿ (1/(1-t)) = n! * 1/(1-t)^(n+1).
    Setting t=0 gives us the result in the video:
    Dⁿ I(0) = ∫₀¹ (ln(1/x))^n dx = n!

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +121

    9:26 No homework today because I’m resting to celebrate my birthday! 🎂

  • @leecherlarry
    @leecherlarry 3 роки тому +2

    compi can verify too:
    *Assuming[n \[Element] Integers \[And] n > 0, Integrate[Log[1/t]^n, {t, 0, 1}]] == n! // FullSimplify*

  • @egillandersson1780
    @egillandersson1780 3 роки тому +2

    I like induction problems. They always seems "magic" !
    Thank you

  • @chriszethird
    @chriszethird 3 роки тому

    A very pleasant video to watch ! Thanks Michael !

  • @phannynhek1465
    @phannynhek1465 3 роки тому

    Wow...I do love your sharing!

  • @alainbao3604
    @alainbao3604 3 роки тому

    Great problem !!! Thank you !!!

  • @jserleakabay7614
    @jserleakabay7614 3 роки тому

    I find this identity very interesting.
    Using indirect differentiation under the integral,
    Evaluating \int_{0}^1(lnt)^n dt
    We know that \int_{0}^1x^m=1/(n+1)
    Now
    Differentiating the above results n times and setting m=0
    We get
    (-1)^n n!
    Therefore
    A=\int_{0}^1(lnt)^n dt=(-1)^n n!
    Now back to the question:
    \int_{0}^{1}(-lnt)^ndt=(-1)^n A
    =n!

  • @panteleimonnielsen225
    @panteleimonnielsen225 3 роки тому

    This identity's useful to me at the moment - thanks!

  • @barryzeeberg3672
    @barryzeeberg3672 3 роки тому +1

    Just asking: Since 0! = 1 based on convention or definition, might it not be better to use n = 1 as the base case for the induction, since 1! really does equal 1, without invoking any special convention or definition?

  • @sirB0nes
    @sirB0nes 3 роки тому

    In your base case, you run into problems at the endpoints of the interval. At the left endpoint, the expression inside the exponent goes to infinity and, at the right endpoint, it goes to 0: both (infinity)^0 and 0^0 are indeterminate forms.
    It's probably not hard to show that it approaches a limit of 1 at both ends. But there is something to show there.

  • @michaeledwardharris
    @michaeledwardharris 3 роки тому

    Outstanding!

  • @knvcsg1839
    @knvcsg1839 3 роки тому

    All in all, it was just using Induction to prove or finding through the substitution method.

  • @andyrodrigoalvarado118
    @andyrodrigoalvarado118 3 роки тому

    THAT'S REALLY EXCITING, LET'S PUT THAT IN A SHIRT!!!!!

  • @CM63_France
    @CM63_France 3 роки тому +1

    Hi,
    For fun:
    0:05 : "our goal is to",
    5:49 : "let's get rid of this".

  • @Dan-vt9vk
    @Dan-vt9vk 3 роки тому +1

    Turns out it was very exciting!

  • @emanuellandeholm5657
    @emanuellandeholm5657 3 роки тому +2

    On a scale from alpha, beta etc. I'd rate it as gamma.

  • @romajimamulo
    @romajimamulo 3 роки тому +1

    Wow when I saw that substitution, the gamma/pi function really jumped out at me

  • @cicik57
    @cicik57 3 роки тому

    yes so it is true for n € R. Interesting, if this alternative gamma function can be used for advanced stuff or extend that on Z, or futher stuff...

  • @charlesglidden557
    @charlesglidden557 3 роки тому +1

    1/t at t=0 is undefined. So how can you evaluate at the 0 limit of the integral?

    • @charlesglidden557
      @charlesglidden557 3 роки тому +1

      @John Martin The limit of 1/t as t goes to zero from the right is infinity so I am not sure how that helps. And the notation for the integral says 0 to 1 not anything about a limit.

    • @ojasdeshpande7296
      @ojasdeshpande7296 2 роки тому

      @@charlesglidden557 noob

    • @charlesglidden557
      @charlesglidden557 2 роки тому

      @@ojasdeshpande7296 Thank you for your informative replay

  • @s1ng23m4n
    @s1ng23m4n 3 роки тому

    U-sub:
    ln(1/t) = u => I = Integral [0..inf] (u^(n+1-1) * exp(-u) * du) = Г(n+1) = n!
    Oh, its a second part of the video, sorry.

  • @Ensivion
    @Ensivion 3 роки тому

    a bit of nitpicking: the first argument of the base case technically implies that the integrand converges, which it doesn't, thus the integral may or may not converge which would be a required step, as infinity ^ 0 is indeterminant form which may or may not have a solution

    • @firemaniac100
      @firemaniac100 3 роки тому +1

      The integral should be taken in the improper sense, that is as the integral from eps>0 to 1 with epsilon going to zero from above. For those values the integrand is well defined. So ln(1/t)^0 = 1

    • @Ensivion
      @Ensivion 3 роки тому

      @@firemaniac100 yes, you have to show that limit exists, before you can just replace it with 1.

    • @VIRUS200086
      @VIRUS200086 3 роки тому +1

      @@Ensivion For every interval [a, 1] with 0

  • @eetswalads5528
    @eetswalads5528 3 роки тому

    I just created a recurrence relation and used integration by parts.
    Iₙ = ∫ ln(1/t)^n dt
    Iₙ = ∫ 1 * ln(1/t)^n dt
    Iₙ = [t*ln(1/t)] (evaluated from 0 to 1) - ∫ -n(t)(1/t)(ln(1/t))^(n-1) dt
    Iₙ = ∫ n(t)(1/t)(ln(1/t))^(n-1) dt
    Iₙ = ∫ n(ln(1/t))^(n-1) dt
    Iₙ = n ∫ (ln(1/t))^(n-1) dt
    Iₙ = n * Iₙ₋₁
    So, by observation, it's clear that this pattern continues down to I₀.
    I₀ = ∫ 1 dt = 1 (evaluated from 0 to 1)
    So, any Iₙ = n!
    For the record, any instance of an integral in this comment is designated to be a definite integral between 0 and 1. Unicode doesn't really allow for inline super and subscripts, so I had to approximate a well-written proof as best I could :)

  • @willyh.r.1216
    @willyh.r.1216 3 роки тому

    Cool integral

  • @meiwinspoi5080
    @meiwinspoi5080 3 роки тому

    this is gamma function!!!

  • @BCQM_BCQM
    @BCQM_BCQM 3 роки тому +1

    Can we prove whether this is true for n not being intergers?
    The RHS is gamma of n+1 instead of n!

    • @xiaoshou6752
      @xiaoshou6752 3 роки тому +1

      Absolutely, but that would mean that you couldn't use induction :)

    • @jserleakabay7614
      @jserleakabay7614 3 роки тому

      Of course
      This is just another awesome representation of the gamma function.
      To prove that, you will have to use
      x=-lnt

    • @BCQM_BCQM
      @BCQM_BCQM 3 роки тому +1

      @@jserleakabay7614 ok, thanks you.

  • @klementhajrullaj1222
    @klementhajrullaj1222 2 роки тому

    Can you prove it why 0!=1 ?!

  • @sinecurve9999
    @sinecurve9999 3 роки тому +1

    TIL This formula was found in 1730 by David Bernoulli.

  • @kennethgee2004
    @kennethgee2004 3 роки тому

    I am sorry but 0! is not equal to 1

  • @sgdufbaoaah8692
    @sgdufbaoaah8692 3 роки тому

    good

  • @adambascal
    @adambascal 3 роки тому +1

    Differentiation under the integral sign makes proving this identity pretty simple too!

  • @greg55666
    @greg55666 3 роки тому +1

    Hey, Michael, how can you casually claim that (ln (1/t))^0 is 1, when ln (1/0) is infinity?

    • @rodrigomarinho1807
      @rodrigomarinho1807 3 роки тому

      N=0, not t

    • @greg55666
      @greg55666 3 роки тому

      @@rodrigomarinho1807 Yes, I know if (ln (1/t)) is anything other than infinity (in other words, when t is anything other than 0), then you're fine. But the integral is from 0 to 1. When t=0, (ln(1/t)) = infinity.

  • @anddyalvarado-solano3242
    @anddyalvarado-solano3242 3 роки тому

    Sweet

  • @andrezaodausp
    @andrezaodausp 3 роки тому

    Beautiful

  • @Xphy
    @Xphy 2 роки тому

    I solved it correctly in my imagination without watching the video in 2min

  • @leickrobinson5186
    @leickrobinson5186 3 роки тому +1

    Michael, there were some audio issues in this video. The volume appears to go up and down significantly as you move closer to and farther from the microphone, or when you turn your head.
    There also appear to be deep reverberations transmitted to the microphone when you write on the board, particularly noticeable when you’re writing on the uppermost part of the board (although, personally, I find these deep reverberations to be somewhat pleasant, although momentarily distracting).

  • @yeahyeah54
    @yeahyeah54 3 роки тому +1

    i smell some gamma funtion hiding somewhere

    • @jserleakabay7614
      @jserleakabay7614 3 роки тому

      Yeah ..... taking x=-lnt or
      e^(-x)=t
      You will get the integral representation of the Gamma function

  • @mepoor761
    @mepoor761 3 роки тому

    gammmmmmmma my favorit

  • @Vladimir_Pavlov
    @Vladimir_Pavlov 3 роки тому

    trivially.

  • @jfcrow1
    @jfcrow1 3 роки тому

    very

  • @barackobama2910
    @barackobama2910 3 роки тому

    evident gamma function for any Russian child )))

  • @tanishqkumarsah2797
    @tanishqkumarsah2797 3 роки тому +1

    It's too easy
    One of the basic formulae of gamma function

  • @juliang8676
    @juliang8676 3 роки тому

    Yeet

  • @DavidCodyPeppers.
    @DavidCodyPeppers. 3 роки тому

    Have a Great Day Everyone.
    God Loves You and so do I.
    Peace!
    \o/