Liczby p-adyczne | Zacznijmy od zera #6

Поділитися
Вставка
  • Опубліковано 4 лис 2024

КОМЕНТАРІ • 146

  • @Deadpoet132
    @Deadpoet132 2 роки тому +61

    Moja ulubiona seria! Pan Tomasz przedstawia dosyć trudne zagadnienia w przystępny sposób

    • @marcindino
      @marcindino 2 роки тому

      no fajnie...i co z tej przystępności ?!
      czy od jutra zaczniesz używać luczb
      p-adycznych w normalnym życiu
      czy dla fanu zaczniesz na nich wykonywać
      działania matematyczne ?!
      trudne to się dopiero robi po tym
      jak zaczyna tłumaczyć,
      fajnie się to oglada ale nic poza tym
      to jest wiedza abstrakcyjna, nieużyteczna

    • @kendyss
      @kendyss 2 роки тому +2

      @@marcindino
      Powiedz, że nie rozumiesz matematyki, nie mówiąc tego.
      To, że cos jest abstrakcyjne nie znaczy ze jest nieuzyteczne

    • @lechjakobczyk6143
      @lechjakobczyk6143 Рік тому

      @@marcindino 6666666ýo9ojj
      D

  • @piotr-kedziora
    @piotr-kedziora 2 роки тому +44

    Właśnie usunąłem Netflixa, przerzucam się już tylko na odcinki Tomasza Millera. :D
    Wiem, że mniej ich niż na Netflixie, ale to co najwyżej będę oglądał w kółko. ;)

    • @JBMJaworski
      @JBMJaworski 2 роки тому +1

      Bardzo dobry pomysł! :)

  • @jakub28644
    @jakub28644 4 місяці тому

    Ten odcinek przeniósł mnie do innego wymiaru💥 Dziękuję 😀

  • @virgiliovivacemente5441
    @virgiliovivacemente5441 2 роки тому +49

    Tomek nawet książką telefoniczną pewnie potrafi zainteresować!
    Doooooooooobry jest :)

    • @maciekg2771
      @maciekg2771 2 роки тому +1

      haha, dobrze powiedziane :)

    • @swinki33
      @swinki33 2 роки тому +3

      Ale to o czym opowiada jest niezmiernie ciekawe samo w sobie. W połączeniu z talentem dydaktycznym p. Tomasza siedzimy i słuchamy z wypiekami na twarzy. Normalnie perełka!
      Aż lecę poczytać z powrotem DeltęMi :D

    • @maciekg2771
      @maciekg2771 2 роки тому

      @@swinki33 zgadza się. Temat ktory omawia jest super ciekawy. Ale jednocześnie uważam że Tomasz przekazuje wiedzze w sposób nieporównywalne ciekawszy niż przeciętny wykładowca. :)

    • @swinki33
      @swinki33 2 роки тому +2

      @@maciekg2771 Dlatego napisałem, że "w połączeniu z talentem dydaktycznym...". Gdybyśmy mieli takich nauczycieli matematyki, a nawet wręcz wszelkich przedmiotów ścisłych, jak dr Tomas Miller to Polska byłaby zagłębiem olimpijczyków z fizy, matmy, chemii, infy... Ech rozmarzyć się tylko...

    • @maciekg2771
      @maciekg2771 2 роки тому

      @@swinki33 masz rację.. Trzeba go promować w przemyślany sposób

  • @komand0000s
    @komand0000s 2 роки тому +2

    ma Pan fantastyczne umiejętności edukacyjno - oratorskie pozdrawiam i gratuluje

  • @pawetrzcinski6392
    @pawetrzcinski6392 2 роки тому +24

    Mistrzu.... dzisiaj to pojechałeś po bandzie
    👍

  • @piotrkaczmarczyk3587
    @piotrkaczmarczyk3587 2 роки тому +2

    No i dobra... trudno... obejrzę jeszcze za dwa odcinki i mi rozsadzi baniak... ale Panie Tomaszu czekam niecierpliwie na kolejne

  • @marcinwierszycki2784
    @marcinwierszycki2784 2 роки тому +2

    Rewewlacja! Fantastycznie przygotowane i poprowadzone!

  • @milOzaur
    @milOzaur 2 роки тому +12

    Czemu Pan nie był moim wykładowcą!? Ma Pan dar przekazywania wiedzy, świetnie się ogląda

  • @zefiriusz
    @zefiriusz 6 місяців тому

    Bardzo mi ten system przypomina poznany na studiach system uzupelnieniowy do dwóch U2 służący do reprezentacji liczb całkowitych (lub ogolnie stalopozycyjnych) w pamięci komputera. Tam również -1 to były same jedynki, ograniczone z lewej strony dostępna liczba bitów na których liczba jest zapisana. Bardzo ciekawy odcinek, oglądam dalej 🙂 Pozdrawiam!

  • @emit673
    @emit673 Рік тому

    Miałem oglądnąć jeden odcinek.
    A zacząłem już piąty odcinek oglądać.

  • @lanzu1344
    @lanzu1344 2 роки тому +12

    Się Pan Tomek rozpędził :D Tylko niech się nie zatrzymuje :D

  • @astanislawczyk
    @astanislawczyk 2 роки тому +1

    Bardzo dobra seria. Rewelacja!

  • @lukasz1128
    @lukasz1128 2 роки тому +2

    SUPER. Teraz nie mogę się doczekać kolejnego odcinka o moich ulubionych liczbach ;P

  • @pawechosta3835
    @pawechosta3835 2 роки тому +1

    Super wyklad na bardzo trudny temat,

  • @aktuelPL
    @aktuelPL 2 роки тому +1

    Wow, obejrzałem - prawie do końca - dopiero za trzecim razem i czapki z głów, długo zastanawiałem się jakim prawem niby suma wszystkich liczb dodatnich może być ujemna - a peadyczne zamiatają i to świetnie pokazują 😱

    • @aktuelPL
      @aktuelPL 2 роки тому

      Pewnie i tak tego nie zrozumiałem w 100% ale daje do myślenia tak jak liczba -1/12

  • @camponotusalpinus
    @camponotusalpinus 2 роки тому +2

    to jest bardzo dobre, przerobić na angielski i będą milionowe zasięgi!

  • @klopsyzplexy7396
    @klopsyzplexy7396 Рік тому

    hehe, Pan Tomasz powiedział KUPE hehe :D :D :D a tak poważnie to zacna to seria

  • @tomaszrusnak5684
    @tomaszrusnak5684 2 роки тому +5

    Może tego dowiem się z następnego odcinka, ale zapytam. Czy istnieje system liczbowy składający się nieskończonej liczby cyfr przed przecinkiem i po przecinku? Takie połączenie licz rzeczywistych i peadycznych?

  • @kamilsadkowski
    @kamilsadkowski 2 роки тому +1

    Najciekawszy wykład z matematyki, jaki kiedykolwiek widziałem.

  • @qj0n
    @qj0n 2 роки тому +6

    W kwestii zastosowań to nie mogę oprzeć się wrażeniu, ze system zapisu liczb U2 był wzorowany właśnie na Q2 - ten sposób prezentacji -1 jako ...1111, który spełnia wszystkie oczekiwane rezultaty (dodanie 1 daje 0 itp.)

    • @MarcinSzajek
      @MarcinSzajek Рік тому +1

      Dokładnie to samo chciałem napisać! Najlepsze wytłumaczenie U2 jakie znam

  • @laborkawplecy
    @laborkawplecy 2 роки тому +1

    Facet zabrał mnie na wycieczkę do świata, z istnienia którego nie zdawałem sobie sprawy.

  • @dariuszrozycki9194
    @dariuszrozycki9194 Рік тому +1

    Korzystamy z tych liczb codziennie.. W urządzeniach cyfrowych... Chodzi tu o liczby całkowite ze znakiem... Bajt ma 8 bitów i podstawowy zakres 0 do 255.. Ale może mieć -128 do 127. Wtedy -1 dziesiętnie to 11111111 binarnie.. Wielka kariera czegoś co się wydaje być całkowicie abstrakcyjne.Te liczby mają implementacje w praktycznie każdym języku programowania i procesorze. Używałem ich wcześniej ale nie wiedziałem że tak się nazywają.

    • @przemekkobel4874
      @przemekkobel4874 Рік тому

      Też się zdziwiłem na "informatykę teoretyczną". Ogólnie liczby takie powstają przez odwrócenie wszystkich bitów i dodanie 1 (z 0000 robi się 0000, z 0001 - 1111, 0011 - 1101 itd.), co powoduje, że operacje obliczeniowe na tym dają prawidłowe wyniki bez przeróbek sprzętu. To wygląda tak, jakby Matematyka specjalnie zrobiła nam miejsce na binarne mechanizmy liczące. W sumie nie tylko binarne.

  • @mroziu1
    @mroziu1 2 роки тому +1

    No to było ciekawe i znacznie bardziej zrozumiałe :)

  • @romancywicki6615
    @romancywicki6615 2 роки тому +2

    Genialne.

  • @perinoid
    @perinoid Рік тому +3

    Liczby 2-adyczne kojarzą mi się z "kodem uzupełnieniowym do 2' stosowanym do reprezentacji liczb naturalnych w komputerach.

    • @tytjan17
      @tytjan17 4 місяці тому

      Całkowitych

  • @Spitek1974
    @Spitek1974 2 роки тому +1

    Wow.Super.

  • @arthy27
    @arthy27 2 роки тому +2

    Bomba!

  • @ireneuszpapa8612
    @ireneuszpapa8612 Рік тому

    Super

  • @andbubu4822
    @andbubu4822 2 роки тому +1

    To jest to!

  • @TheWlooo77
    @TheWlooo77 2 роки тому

    Wow, coś niesamowitego!

  • @swinki33
    @swinki33 2 роки тому +2

    Ciekawe, czy jeśli Obcy posługują się którymś z systemów p-adycznych, p2, na przykład 11, bo mają jedenaście wypustek, będą w stanie się z nami porozumieć? Albo co gorsza w ichniej podstawówce uczą posługiwania się WSZYSTKIMI MOŻLIWYMI systemami p-adycznymi jednocześnie...

  • @lioneljonson2582
    @lioneljonson2582 2 роки тому +1

    Super seria

  • @StefanBrock_PL
    @StefanBrock_PL 2 роки тому +8

    Czyli popularny zapis liczby ujemnej jako uzupełnienia dwójkowego jest liczbą 2-addyczną :-)

    • @pstrykplum
      @pstrykplum 2 роки тому +1

      bardziej niebezpieczne będzie stwierdzenie że jest to dowód na istnienie wieloświsatów....

  • @kacper_tak
    @kacper_tak 2 роки тому +1

    Ufff, koszula w granatowa kropki, już się przestraszyłem, że pan Tomasz jest tak biedny, że ma tylko granatową

  • @sawekforc8536
    @sawekforc8536 2 роки тому +2

    Zrób Hopie odcinek o hipotezie reimanna. To dopiero ciekawy temat i ma analogie w fizyce kwantowej.
    Ukłony :)

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому +3

      A może być wykład? ua-cam.com/video/H7jdq0elNoY/v-deo.html Pozdrawiam! :)

    • @sawekforc8536
      @sawekforc8536 2 роки тому

      @@tomaszmiller8030 Dziękuję. Obejrzałem. Układ liczb pierwszych, jest jak upiorny fraktal. Matematyka jest fascynująca poprzez różnorodność ale logikę a mimo to tajemnicza.
      Skutecznie obrzydzano mi ją we wszystkich szkołach. Pociąg już odjechał i tylko szyderczy gwizd i prześmiewczy stukot kół odbija się echem.
      Ukłony :)

  • @jannowak9052
    @jannowak9052 2 роки тому

    21:37 Dwuadyczna wartość bezwzględna z dwóch to jest 1/2? Wynik chyba nie jest już podany jako dwuadyczny. Jaki będzie wynik w takim systemie?

  • @chlodnia
    @chlodnia 2 роки тому +1

    Jedziemy z tym

  • @maciej12345678
    @maciej12345678 2 роки тому +1

    21:34 wszystko jest iluzja percepcji -- ciekawe jak wygląda nieskończoność w Q5

  • @Pawel.J_9101
    @Pawel.J_9101 2 роки тому +1

    Gdyby miał Pan zagwostkę czy coś tłumaczyć to mam dla Pana odpowiedź
    Tak, chce wiedzieć więcej. To dzielenie także.🙂

  • @major8625
    @major8625 2 роки тому +1

    a liczby p-adyczne nie będą okresowe DO pewnego momentu?

  • @asemblerowewstawki
    @asemblerowewstawki 2 роки тому +2

    13:38 Do wykonania tego odejmowania wykorzystywany jest system pożyczania. Nie rozumiem tego, bo jak można pożyczać z ciągu zer?

    • @maciekg2771
      @maciekg2771 2 роки тому +1

      Odrazu napiszę, że nie jestem matematykiem, ale zgodnie z filozofią "Nie wiem, ale się wypowiem", wydaje mi się, że nie ma co myśleć o tym jak o pożyczaniu od ciągu zer. Pożyczasz od sąsiedniej liczby (wtedy możesz sobie u góry napisać -1 zamiast 0). No cóż, i powtarzasz tą czynność nieskończenie wiele razy... Troche mozolne, ale zauważ że ZAWSZE masz od "kogo" pożyczać, wszak liczb po prawej stronie jest nieskończenie wiele.
      I wiem trochę to pokrętne i nieintuicyjne, ale w sumie jak poznawałem liczby naturalne w podstawówce a kolega się mądrzył ile to jest 5 - 7, to wynik (-2) spoza liczb naturalnych też wydawał mi się mega pokrętny i nieintuicyjny.
      Nie wiem czy na 100% dobrze myślę. W sumie pytanie uważam za ciekawe i mam nadzieję, że ktoś zada sobie trud by może podtwierdzić to co napisałem, albo odczarować nam z trochę tego świata.
      Pozdro

    • @asemblerowewstawki
      @asemblerowewstawki 2 роки тому +1

      @@maciekg2771 Też myślałem o tym w ten sposób, ale zawsze jak pożyczasz w normalnym układzie to wiesz, że gdzieś tam na najwyższym poziomie będzie co najmniej jedynka, a tutaj zawsze będzie zero. Myślę, że po prostu trzeba się z tym pogodzić, że tak działa arytmetyka w świecie liczb p-adycznych.
      Np. jak weźmiesz zbiór p-10 i odejmiesz 0 - 1 to wyjdzie ....99999 - co oznacza, że -1 ze świata rzeczywistego to ...99999 ze świata p-10. I potem ta konkluzja, że nieskończoność to tak na prawdę -1. Znając metodę obliczeń nie jest to już takie zaskakujące jak było na początku :)

    • @maciekg2771
      @maciekg2771 2 роки тому +1

      @@asemblerowewstawki błąd w rozumowaniu jest chyba taki że nie ma takiego czegoś jak "najwyższy poziom". Tak samo jak w liczbach rzeczywistych takiego czegoś jak "najniższy poziom". Ale faktycznie jest to bardziej nieintuicyjne niż to że 1 = 0.(9), bo te wartości są mega blisko siebie. Chyba trzeba gruba kreska oddzielić liczbę od reprezentacji liczby. Liczby mogą być bliskie siebie nawet jeśli ich reprezentacje nie są nawet podobne.
      A co do przykladu to go rozumiem. Ale nie ma liczb 10-adycznych bo 10 jest liczba złożoną.

    • @asemblerowewstawki
      @asemblerowewstawki 2 роки тому

      @@maciekg2771 Ok, dzięki za ciekawe wskazówki, wydaję mi się, że już to rozumiem. Najważniejsze w tym wszystkim jest to, że gdy wyjdzie nam jakiś wynik, który w liczbach rzeczywistych dałby jakąś nieskończoność, a tutaj jest to liczba np. ...1111, to możemy wykonywać na tym ciągu dalsze obliczenia, gdzie na liczbach rzeczywistych byłoby niemożliwe. Po prostu jest to przydatne i najważniejsze jak najbardziej poprawne, w co wątpiłem z powodu pożyczania czegoś od "zera". Ale jak się przeliczy kilka przykładów, to widać, że obliczanie są sensowne i można po prostu robić rzeczy, których nie dałoby się obliczyć z pomocą liczb rzeczywistych.

  • @omeleq
    @omeleq 2 роки тому +1

    fajnie by znaleźć gdzieś praktyczne zastosowanie

  • @JanNowak-ss1fq
    @JanNowak-ss1fq 2 роки тому +6

    Dobry materiał nie potrzebuje klikbejtowych miniaturek, a ten do takowych się zalicza (:

  • @jannowak9052
    @jannowak9052 2 роки тому +1

    Czy słynna suma 1+2+3+4+5+...=-1/12 ma jakiś związek z liczbami p-adycznymi???

  • @akta1984
    @akta1984 Рік тому

    Nawet nie wiedziałem, ze niemal codziennie uzywam liczb p-adycznych.
    Ale teraz będę mógł "mądrzej" zaginąć managerów :D

  • @gonzogorf7019
    @gonzogorf7019 2 роки тому +3

    zabrakło praktycznego zastosowania.
    Lovecraft pisał o tym że geometria nieeuklidesowa może wpędzić w szaleństwo, dobrze że nie nadział się na ten wykład ;)

    • @piotrtoborek2442
      @piotrtoborek2442 2 роки тому +6

      Nie wiem czy zauważyłeś, ale budynki z zewnątrz wydają nam się mniejsze niż od wewnątrz. Można to przypisać perspektywie, ale istnieje teoria mówiąca, że ludzki mózg postrzega przestrzeń w sposób nie-euklidesowy (od środka kąty proste wydają nam się większe niż 90 stopni, a od zewnątrz - mniejsze). Taka ciekawostka ;)

  • @arkadiuszpaterak
    @arkadiuszpaterak 2 роки тому +4

    Czy takie tematy są poruszane na innych studiach niż matematyczne?

    • @omeleq
      @omeleq 2 роки тому +3

      nie

    • @piotrkaczmarczyk3587
      @piotrkaczmarczyk3587 2 роки тому +4

      Przypuszczam że teraz to nawet na studiach matematycznych nie są poruszane;)

    • @piotrfelix
      @piotrfelix 2 роки тому +5

      Wszystkie inne tematy z tej serii(łącznie z zapowiedzianymi) poza liczbami p-adycznymi są wykładane na informatyce.
      A propos: kodowanie liczb U2 można uznać za przybliżenie o skończonej długości liczb 2-adycznych- widać to zwłaszcza przy liczbach ujemnych, które z lewej strony mają nieskończenie wiele największej istniejącej cyfry w danym systemie pozycyjnym.

    • @tomaszgrabowski4424
      @tomaszgrabowski4424 2 роки тому +1

      Zależy od specjalności. Na teoretycznej tak, w ramach przedmiotu Teoria liczb. Na nauczycielskiej, czy finansowej raczej nie (są inne zagadnienia - typowo "specjalnościowe"). Co nie oznacza, że o liczbach p-adycznych student nie ma szans się dowiedzieć. Zacząć można od podręcznika p. J.Rutkowskiego "Zbiór zadań z teorii liczb" (większość tematów z tego zbioru przerabiane jest na matematyce, informatyce, i niektórych kierunkach techn. - arytmetyka modulo, algorytm Euklidesa, chińskie twierdzenie o resztach, Kongruencje, układy kongruencji). Liczby p-adyczne (wprowadzenie, w tym waluacja) sa na końcu książki.

    • @gracus1012
      @gracus1012 2 роки тому +1

      @@tomaszgrabowski4424 Temat o liczbach p-adycznych jest tam trudny. Poruszane są tam takie zagadnienia, jak całka Volkenborna chociażby, no ogólnie, takie specjalistyczne raczej rzeczy.

  • @antekp2965
    @antekp2965 2 роки тому

    bardzo przystępne wprowadzenie do liczb p-adycznych. zabrakło mi tylko wyjaśnienia czy jest albo czemu nie ma geometrycznej reprezentacji liczb p-adycznych tak jak w przypadku liczb rzeczywistych (punkt na osi liczbowej) czy zespolonych (punkt albo wektor na płaszczyźnie). tutaj wartość bezwzględna i metryka jest związana z abstrakcyjnymi ciągami, co jest mało intuicyjne

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому

      Geometryczna interpretacja liczb p-adycznych niestety nie weszła do ostatecznej wersji scenariusza. Ale opowiedziałem o tym co nieco przy innej okazji ua-cam.com/video/8MloA7-PfVI/v-deo.html (od ok. 50 minuty)

  • @MrLysyn77
    @MrLysyn77 2 роки тому

    Pozdrawiam

  • @Damjes
    @Damjes 2 роки тому

    A co z rozszerzeniem Q_p do R? Np. rozpatrywanie zbieżnych ciągów liczb p-adycznych?

    • @maksymiliank5135
      @maksymiliank5135 Рік тому

      jest o tym mowa w 16:42. Nie wiem tylko czy można w ten sposób reprezentować wszystkie liczby rzeczywiste, czy na przykład nie ma pomiędzy nimi "dziur"

  • @TomaszTrelaPlus
    @TomaszTrelaPlus 2 роки тому

    już myślałem że będzie wspomnienie o szesnastkowym system liczbowym, tak jak dwójkowy jeden z najpopularniejszych systemów we współczesnym świecie informatycznym.

  • @andrzejwodynski
    @andrzejwodynski 2 роки тому +2

    A czy istnieją inne sensowne zapisy liczb niż adytywne, pozycyjne i cykliczne?

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому +1

      Hmm, pewne zasługi dla matematyki na reprezentacja liczb rzeczywistych jako tzw. ułamków łańcuchowych, którą można traktować jako nieaddytywny i niepozycyjny system zapisu (choć to zależy, jak dokładnie definiujemy "pozycyjność"). Nie wiem niestety, co ma Pan tu na myśli przez cykliczność.

    • @andrzejwodynski
      @andrzejwodynski 2 роки тому

      @@tomaszmiller8030 dawno w szkole byłem i już wiele zapomniałem, ale tak łańcuchowy nazywał się ten zapis. Ciekawy jestem ile jest innych. Była jakaś nowa notacja do mechaniki kwantowej ale coś ucichło i chyba była ona nowym systemem liczbowym. Chętnie posłucham o innych odkrytych systemach zapisu liczb.

    • @tomaszgrabowski4424
      @tomaszgrabowski4424 2 роки тому

      Jest np. coś takiego jak rozwinięcie diadyczne liczb z przedziału (0,1). Jest takie zadanko we: Wstęp do matematyki, J.Musielak, s. 96.

  • @mruszka2715
    @mruszka2715 2 роки тому

    Gdybym miała takiego nauczyciela od matmy to bym nie była humanistką! 🙃

  • @serekmedia
    @serekmedia 2 роки тому

    signed Integery w U2 to p-adyczne z p=2?

  • @marcinkrzyzynski5894
    @marcinkrzyzynski5894 2 роки тому +1

    Co ten Pan mówi?:)))
    Masakra
    Świetny podcast, świetny wykładowca

  • @adamturowski8948
    @adamturowski8948 2 роки тому +3

    Da się też przy pomocy liczb p-adycznych udowodnić, że 1+2+3+4+...=-1/12?

    • @tomaszdziamaek1839
      @tomaszdziamaek1839 2 роки тому

      To bzdura. 1+2+3+4... nie równa się -1/12. Ten ciąg nie ma sumy i dąży do nieskończoności. Gdybym żył nieskończenie wiele lat i pomnażał swój majątek, w pierwszym miesiącu odkładając 1 zł na konto, w drugim 2 itd., to odkładając nieskończenie długo miałbym dług i to jeszcze groszowy? - 1/12 to 0.08(3) Minus osiem groszy? Serio?

    • @maciekg2771
      @maciekg2771 2 роки тому

      Możesz rozwinąć? widziałem kiedyś coś takiego ale kompeltnie nie umiem teraz tego znaleźć. Chyba był to jakiś trik

    • @adamturowski8948
      @adamturowski8948 2 роки тому +2

      ​@@tomaszdziamaek1839 A szereg 1+2+4+8+... niby ma? I to jeszcze -1? To po pierwsze. Po drugie wszelkie analogie rzeczywistych działań do matematycznych operacji są bezsadne, ponieważ matematyka jest czystą abstrakcją i nadal np. nie rozumiemy nieskończonych operacji. Tak samo jak pojęcie nieskończońości jest nieco mgliste. A wracając do szeregów nieskończonych zbieżnych. Jakim cudem dodając coś nieskończenie dochodzimy do jakieś liczby? Przecież my ciągle coś dodajemy.

    • @adamturowski8948
      @adamturowski8948 2 роки тому +1

      @@maciekg2771 ua-cam.com/video/w-I6XTVZXww/v-deo.html
      I to jest jeszcze o tyle zabawne, że to -1/12 wychodzi na różne sposoby.

    • @tomaszgrabowski4424
      @tomaszgrabowski4424 2 роки тому +2

      @@adamturowski8948 Bo to nie jest "Zwykłe szkolne" sumowanie, tylko "sumowanie w sensie Cesaro". Mamy też np. całkowanie w sensie Riemanna (najbardziej znane, "studenckie"), w sensie Lebesgue'a, itd. Wynik zależy od sposobu całkowania. Istnieją zbiory niecałkowalne w sensie Riemanna, ale w Lebesgue'u wyjdzie konkretny wynik. Znowuż mamy np. zbiór Vitalego, nie on mierzalny nawet w sensie Lebesgue’a.

  • @1964ANDRZEJ
    @1964ANDRZEJ 2 роки тому

    Oglądam kolejny odcinek cyklu. I się zastanawiam
    Czy Pan Tomasz czegoś się jeszcze uczy?

  • @krzysztofjaglarski8218
    @krzysztofjaglarski8218 2 роки тому

    Czy matematyka może doprowadzić do "śmiania się do rozpuku"? 😊

  • @martinwujet8424
    @martinwujet8424 Рік тому

    jak boga kocham skąd mata foto tych ludzi ??

  • @TeacherBiochem
    @TeacherBiochem 2 роки тому +1

    Panie Tomaszu. Próbuje rozszyfrować Pana technikę wykładania od dawna, i nic… Mówi Pan normalnym tonem, bez „pajacowania”, bez zbędnych słów, niby normalnie, a wszystko tak, że po skończeniu słuchania wykładu chce się więcej, i więcej… Takie geny? Gdzie jest klucz, że całość tak fajnie Panu wychodzi? Jest Pan najlepszym wykładowcą, jak to mówi moja córka, EVER! Tak więc kontynuuję dalej próby złamania Pana sekretu. Pozdrawiam :)

  • @Szycha03
    @Szycha03 2 роки тому

    a co z liczbą np pi w zbiorach padycznych? moze w ktoryms jest skonczona liczbą

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому

      Liczbę π nie bardzo jest jak zdefiniować w Qp. Na math stackexchange'u jest na ten temat ciekawy wątek pt. "Can π be defined in a p-adic context?"

  • @ByczeStudio
    @ByczeStudio 2 роки тому

    Panie Tomku. Mam jedno pytanie. Czy ktoś p-adycznie podszedł do Riemanna? Może warto się nad tym pochylić

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому +3

      Owszem, jest też nawet p-adyczna odpowiedniczka funkcji dzeta Riemanna, i chyba też do końca nie wiadomo, jak zachowują się jej zera... Ale niewiele wiem na ten temat :)

    • @ByczeStudio
      @ByczeStudio 2 роки тому +1

      @@tomaszmiller8030 bardzo dziękuję za odpowiedź. Panie Tomku w takim razie ponownie napisze: może warto się nad tym pochylić🙂 pozdrawiam serdecznie i gratuluję, bo nie każdy potrafi w jasny sposób pokazać ciemne oblicze matematyki🙂

  • @janlech2
    @janlech2 2 роки тому

    proponuje zrobic odcinek o reprezentacji liczb z podstawą ułamkową beta expansion i porównac algorytmy greedy i lazy rozwinieć

  • @krzysztofjabonski6917
    @krzysztofjabonski6917 2 роки тому

    Jak się mają zbiory liczb p-adycznych i kwaternionów do zbiorów liczb zespolonych? Dotychczas każdy następny "tradycyjny" zbiór zawierał poprzednie (N należy do C, który należy do W, W+NW należy do R, R+U do Z).

    • @rigelheron9997
      @rigelheron9997 2 роки тому +1

      Por. diagram w 2:19, gdzie strzałki oznaczają zawieranie

    • @krzysztofjabonski6917
      @krzysztofjabonski6917 2 роки тому

      @@rigelheron9997 Diagram nie wyczerpuje pytania. Wymierne należą zarówno do R jak i do p-adycznych. R oraz p-adyczne mają część wspólną. Ale jak to wygląda "wyżej". Czy p-adyczne zmieszczą się np. w zespolonych, itd.?

    • @rigelheron9997
      @rigelheron9997 2 роки тому

      @@krzysztofjabonski6917 Jeśli dobrze rozumiem, nie należy traktować liczb p-adycznych jako podzbioru C m.in. dlatego, że np. omawiana nieskończona suma 1+2+4+8+... jest w C rozbieżna (na tej samej zasadzie, jak w R). Co prawda w Q też jest, ale w tę stronę to nie szkodzi ;)

    • @krzysztofjabonski6917
      @krzysztofjabonski6917 2 роки тому

      No właśnie...

    • @gracus1012
      @gracus1012 2 роки тому

      Liczby p-adyczne nie są ani liczbami zespolonymi, ani kwaternionami, ani jakąkolwiek jeszcze wyższą algebrą, bowiem są istotnie innym rozszerzeniem ciała liczb wymiernych niż liczby rzeczywiste.

  • @jarozanio2043
    @jarozanio2043 2 роки тому

    Super wykład ale widać że matematycy to magicy i wymyślają takie rzeczy które nawet filozofom się nie śniło 😂

  • @ireneuszmaslinski9187
    @ireneuszmaslinski9187 2 роки тому

    Czy ja dobrze rozumuję? Liczba ...5432,3214 chyba dąży do nieskończoności, bo to jest 0,3214+2+30+400+5000 itd.

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому +1

      W świecie liczb rzeczywistych dąży do nieskończoności, ale w świecie liczb p-adycznych - niekoniecznie, bo inaczej się mierzy "odległość". Por. od 20:40

  • @grzegorzlesko9331
    @grzegorzlesko9331 Рік тому

    Często mówi Pan to temat na inny wykład .Kiedy można spodziewać się analizy funkcjonalne,j rachunku macierzowego

  • @jszania
    @jszania 2 роки тому

    lista zastosowań nie powala na kolana.

  • @bartosak
    @bartosak 2 роки тому

    Czy liczby zapisane binarnie (używane w informatyce) to liczby 2adyczne?

    • @jacekwoznicki1810
      @jacekwoznicki1810 2 роки тому +1

      Nie, przecież liczby ujemne i w ogóle operacje i zapis nie jest taki sam.
      Po prostu zapis binarny jest użwany do 2-adycznych. ale to nie to samo.

  • @krzysztofjabonski6917
    @krzysztofjabonski6917 2 роки тому

    Jak rozumiem w systemie dwójkowym (1),0 = -1, tylko... dlaczego?

  • @tomaszjaworski4427
    @tomaszjaworski4427 2 роки тому +1

    Panie Tomku , my tu sobie tak cały czas o liczbach , a czy są inne działania niż + - * / , czy Matematyka zna takie operacje ?

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому +2

      Oczywiście - sam opowiedziałem dwa odcinki wcześniej o piątym podstawowym działaniu arytmetycznym, czyli potęgowaniu. Ale ciekawych matematycznie działań na liczbach i innych obiektach jest nieskończenie wiele ;)

    • @tomaszjaworski4427
      @tomaszjaworski4427 2 роки тому

      @@hex4454 mi przychodzą do głowy operacje informatyczne , przesuń o znak , odwróć kolejność. Np 1234 operacja odwrócenia to 4321 . Może być też operacja mieszania liczb np 123 zmieszaj z 789 , dostajesz w zależności od zdefiniowania operacji. 172839 lub 718293. Lub o innym skoku. Pytanie czy te inne oprcje mają jakiś większy użytek, czy to tylko takie ciekawostki.

    • @tomaszjaworski4427
      @tomaszjaworski4427 2 роки тому

      @@tomaszmiller8030 tak to prawda , było o potęgowaniu, ja się wyraziłem mało precyzyjne, czy są inne operacje matematyczne nie "pochodząc " od dodawania. Mnożenie to wielokrotności dodawania , potęgowanie to wielokrotność mnożenia itd... bardziej pytam czy są operacje które nie pochodzą od dodawania i czy mają jakieś użyteczne zastosowanie w matematyce?

    • @mironhunia300
      @mironhunia300 2 роки тому

      ​@@tomaszjaworski4427 Z ciekawych operacji niewywodzących się z dodawania można wymienić na przykład złożenie (funkcji), operacje bitowe (AND, OR, XOR) (na ciągach bitowych), NWD i NWW (na liczbach naturalnych), dodawanie nimliczb (niby nazywamy to dodawaniem, ale nie wywodzi się z dodawania liczb całkowitych) i sprzężenie liczby zespolonej, wszystkie te operacje mają swoje zastosowania.

  • @biachpiach
    @biachpiach Рік тому

    no to tylko jedno sie nasuwa na mysl... co jezeli w lewo i w prawo nieskonczone ciagi liczb

  • @zuzannakonior6284
    @zuzannakonior6284 4 місяці тому

    O matko

  • @michatarnowski580
    @michatarnowski580 2 роки тому

    Szkoda, że nie było przykładów jak 21/37.

  • @heniudamian534
    @heniudamian534 3 місяці тому

    Na podstawie systemu 2adycznego współczesne komputery zapisują liczby 😂

  • @andrzej9618
    @andrzej9618 2 роки тому

    Ale co to ma znaczenie lewa prawa strona. Zegarek chodź w prawo i lewo to że ktoś ustalił że działa większość w prawo to tylko ustalenie?

    • @tomaszmiller8030
      @tomaszmiller8030 2 роки тому +3

      Liczby p-adyczne to nie jest po prostu "lustrzane odbicie" rozwinięć liczb rzeczywistych. Gdyby tak było, to np. ten pierwiastek z 2, o którym mówię w 18:34, dałoby się równie dobrze wyciągać w Q5, a się nie da. Proszę zwrócić uwagę, że dodawanie, odejmowanie i mnożenie pisemne nie uległo "odbiciu" - wykonuje się od prawej do lewej, tak jak w szkole.

    • @andrzej9618
      @andrzej9618 2 роки тому

      @@tomaszmiller8030 rozumiem. Mówię o działaniach. Doborze tłumaczy

  • @marekantoniusz2622
    @marekantoniusz2622 2 роки тому

    Istnieje tylko monada

  • @theEskit
    @theEskit 2 роки тому

    18:17 dear God co oni zrobili z i

  • @chocolatelps5654
    @chocolatelps5654 2 роки тому

    CO TO JEST

  • @transfer1transfer470
    @transfer1transfer470 2 роки тому

    jak zwykle żałuje że nie byłem pierwszy

  • @krzysztofbanaszczyk5757
    @krzysztofbanaszczyk5757 Рік тому

    Pasjonujące. Po latach nienawiści do matematyki, którą wpoili mi nauczyciele, dzięki tym wykładom dostrzegam jej piękno. Egzystencjalne wręcz.

  • @menow1893
    @menow1893 Рік тому

    Nawet małe dziecko potrafi zrobić Qp

  • @gravityrp6150
    @gravityrp6150 2 роки тому

    14:10 przeprowadż te działania i pokaż, bo tu mnie wyłaczyłeś.

    • @wd62831
      @wd62831 2 роки тому

      Pamiętaj, że to odejmowanie w systemie piątkowym nie dziesiętnym więc jak jest 0 - 2 to trzeba zabrać 1 z kolejnego czyli tam jest teraz 4 (i z kolejnego itd same 4 zamiast 0) i teraz od 5 odejmujesz 2 i zapisujesz wynik 5-3=2, następnie w drugiej kolumnie masz już 4-3=1 a dalej 4-0=4 w nieskończoność.

  • @TomaszLee
    @TomaszLee 2 роки тому

    Mam pytanie do praktyka, choć nie związane bezpośrednio z tematem. Pytanie może wyglądać naiwnie, ale jest całkiem na serio.
    Edukację zakończyłem na licencjacie fizyki. Jednak w tzw. międzyczasie dojrzała u mnie hipoteza pewnej idei - jeżeli jest ona prawdziwa, to zdrowo namiesza w świecie fizyki. Próby falsyfikacji we własnym zakresie się nie powiodły - mimo dużego wysiłku włożonego w czytanie "poważnych" prac powiązanych tematycznie.
    Pytanie brzmi - jak w mojej sytuacji, efektywnie czasowo, przeprowadzić pracę naukową zakończoną publikacją? Wracanie na studia po latach tylko po to żeby zrobić magistra i otworzyć przewód doktorski odpada. Nie zależy mi na tytułach, tylko na formalnym (naukowo) przedstawieniu idei. Niestety żadne recenzowane czasopismo nie potraktuje poważanie pracy amatora, zwłaszcza takiej, która podważa obecnie obowiązujące modele.

  • @zelipapom9155
    @zelipapom9155 2 роки тому +1

    Przepraszam ale muszę to napisać- Pan jesteś największy nudziarz na Youtubie :)