(1+2+3)^2=1^3+2^3+3^3

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 197

  • @blackpenredpen
    @blackpenredpen  2 роки тому +47

    The first 1,000 people to use the link will get a 1 month free trial of Skillshare: skl.sh/blackpenredpen07221

  • @MrDestroys
    @MrDestroys 2 роки тому +373

    Can't wait to use this to prank all my imaginary friends thanks

    • @yeet3673
      @yeet3673 2 роки тому +4

      Lol

    • @danielperales3958
      @danielperales3958 2 роки тому +49

      I love my √-1 friends 😁

    • @EALYCEA
      @EALYCEA 2 роки тому +2

      Imaginary friends???????????????????????????????

    • @peted2783
      @peted2783 2 роки тому +44

      Your friends sound like they’re rather complex

    • @publiconions7575
      @publiconions7575 2 роки тому +12

      @@peted2783 and i am one of them

  • @Ninja20704
    @Ninja20704 2 роки тому +251

    One of the most suprising summation identities i would say. It still kind of blows my mind how perfect a coincidence it is.

    • @thecritiquer9407
      @thecritiquer9407 2 роки тому +9

      nothing is coincidence in maths.

    • @TheOiseau
      @TheOiseau 2 роки тому +41

      @@thecritiquer9407 … then how come 64/16 equals 4 when you cancel the 6 ?

    • @lorenzosaudito
      @lorenzosaudito 2 роки тому +4

      @@TheOiseau that's not a coincidence 🤦‍♂️ that's magic 😂

    • @Emily-fm7pt
      @Emily-fm7pt 2 роки тому +1

      @@TheOiseau Before Einstein physicists thought that gravity acting as an acceleration was just a quirky coincidence

    • @spl0fy
      @spl0fy 2 роки тому

      @@TheOiseau thats like saying why is 100 10 when u divide it by 10

  • @theuserings
    @theuserings 2 роки тому +170

    Other math pranks such as
    log1 + log2 + log3 = log(1+2+3) = log6

  • @summeracharya6424
    @summeracharya6424 2 роки тому +68

    mathematical induction is literally almighty gift in mathematics

    • @Mothuzad
      @Mothuzad 2 роки тому +1

      Proof by induction is a simple subset of proof by contradiction, inverted. Proof by contradiction is the almighty gift in maths and general logic.
      Roughly, to get induction from contradiction, assume that N is the first whole number for which your induction hypothesis H does not hold. That is, assume H(N) is false while every H(n

    • @taopaille-paille4992
      @taopaille-paille4992 2 роки тому +2

      @@Mothuzad You are just saying that was is not false is true here ;)

    • @fgvcosmic6752
      @fgvcosmic6752 3 місяці тому

      ​@@Mothuzad Not really, actually. Its the other way around; contradiction derives from Induction. Why?
      Simoly put, the Peano Axioms: Natural numbers are defined _by_ induction. Induction is a set property of the natural numbers (the other 2 being uniqueness and incrementing), and all other properties are derived.

  • @fept4043
    @fept4043 2 роки тому +83

    Hi Steve, I sat the STEP a few weeks ago and there was a question I think you might enjoy. It contained 4 non-elementary integrals including integrating sinx / x by parts. you could check it out when the paper is released to the public

    • @blackpenredpen
      @blackpenredpen  2 роки тому +25

      Yea. I will see. Thanks for letting me know. 😃

    • @Yt-ff6hn
      @Yt-ff6hn 2 роки тому +1

      Really you have find that ??

    • @fredthelegend7673
      @fredthelegend7673 2 роки тому +1

      Was that STEP 2?

    • @alexi724
      @alexi724 2 роки тому +1

      bro the infinite product one would be sick for this channel

  • @martinepstein9826
    @martinepstein9826 2 роки тому +52

    Here is a nice way to derive the sum of cubes formula that I learned from the book 'A Primer of Analytic Number Theory' by Stopple.
    Let s(n) = 1+2+3+...+n. We want to show that s(n)^2 = 1^3 + 2^3 + ... + n^3. This follows from two simpler identities:
    s(n) - s(n-1) = n
    s(n) + s(n-1) = n^2. This can be seen by writing (1 + 2 + ... + n) + (n-1 + n-2 + ... + 1 + 0) = n + n + ... + n (n times)
    Multiplying these two equations together we get s(n)^2 - s(n-1)^2 = n^3. So we have the telescoping sum
    1^3 + 2^3 + ... + n^3 = (s(1)^2 - s(0)^2) + (s(2)^2 - s(1)^2) + ... + (s(n)^2 - s(n-1)^2) = s(n)^2

    • @Emily-fm7pt
      @Emily-fm7pt 2 роки тому +3

      I think this was actually a practice problem in my number theory book, at the time I think I proved it with mathematical induction, because it was a simple algebra problem at that point.

    • @jorgekennedy3241
      @jorgekennedy3241 2 роки тому

      Hermoso

  • @kianmath71
    @kianmath71 2 роки тому +24

    For the last question the answer can be (3,3,3) (3,2,1) (1,3,2) (1,2,3) (3,1,2) (2,3,1) (2,1,3)

    • @cosmicvoidtree
      @cosmicvoidtree 2 роки тому +7

      Also, as it turns out that if you have n terms, of n, that also works. So (1)^2=1^3, (2+2)^2=2^3+2^3, (skipping 3 bc it was shown), (4+4+4+4)^2=4^3+4^3+4^3+4^3, etc

    • @blackpenredpen
      @blackpenredpen  2 роки тому +7

      Nice 👍!!

    • @jsmsj
      @jsmsj 2 роки тому +16

      @@cosmicvoidtree
      In general (n+n+n+n...n times)^2 = n^3 + n^3 + n^3 ...n times
      As,
      LHS: (n*n)^2 = n^4 = n*n^3 = n^3 + n^3 + n^3 .....n times : RHS

    • @miyo.7792
      @miyo.7792 2 роки тому +1

      But what about 0 ?
      (0;0;0) is a solution
      (0;1;2) works too

    • @kianmath71
      @kianmath71 2 роки тому

      @@miyo.7792 but is 0 a positive number?

  • @baschdiro8565
    @baschdiro8565 2 роки тому +8

    Answers include permutations of (1,2,3) and (a,-a,0) which are also solutions to x+y+z=x*y*z. But permutations of (a,-a,1), (0,1,2), (0,2,2) work, too. And of course (3,3,3).
    There might be rational, irrational or complex solutions, by I did not bother to find them.

  • @akswrkzvyuu7jhd
    @akswrkzvyuu7jhd 2 роки тому +8

    Your videos are always enlightening! This is a good example of mathematical induction at work, but Nicomachus solved the same problem using geometry several hundred years ago. Now that is really impressive.

  • @memechannel5704
    @memechannel5704 2 роки тому +1

    Thank It is so useful

  • @Matthew_Klepadlo
    @Matthew_Klepadlo 2 роки тому +45

    (X+Y)^2: “I think I forgot something important.”
    X^2+Y^2: ”If you didn’t remember it, then it probably wasn’t important.”
    (X+Y)^2: “Yeah, you’re right.”
    2XY: -_-

    • @notdarkangelu
      @notdarkangelu 2 роки тому

      LoL 😂✨🤣

    • @elen1ap
      @elen1ap 2 роки тому

      🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣🤣

  • @isaaclearningtominecraft4751
    @isaaclearningtominecraft4751 2 роки тому +2

    I just showed a really nice geometric proof to my 10 years old kid. All you need is to draw a square of side 1+2+3+..., draw lines from the left at distance 1, 2, 3, ..., and similar lines from the top. One 1^2, 2^2, 3^2, ... comes out naturally. The other squares of similar sizes can be found by combining rectangles from top to bottom with rectangles from right to left. All it remains is counting.

  • @Deejaynerate
    @Deejaynerate 2 роки тому +3

    My favorite number prank is root(3) to the power of 3 is equal to root(3) times 3

  • @khoozu7802
    @khoozu7802 2 роки тому +3

    For non-trivial solution. Let x become the highest number, we can deduce that
    (x+y+z)^2

    • @khoozu7802
      @khoozu7802 2 роки тому +3

      After that apply x^2 & x^3 (mod 4)
      LHS=perfect square=0,1(mod4)
      RHS=x^3+y^3+z^3 where x^3, y^3, z^3 could be 0,1,3(mod4)
      Now we only get 3 conditions to make RHS equal to LHS:
      (3,1,0), (1,0,0) & (3,1,1)

    • @khoozu7802
      @khoozu7802 2 роки тому +2

      With this method, I only have to solve 42 possible solutions in the end

  • @ddsfsdf7381
    @ddsfsdf7381 2 роки тому +6

    the best thing is that you can change the awkward moment of changing 2 to 3 by saying it's 1¹+2¹+3¹ and 1+2=3 in the power

  • @Yt-ff6hn
    @Yt-ff6hn 2 роки тому +3

    Very nice I have never noticed such a great relation

  • @robinson5923
    @robinson5923 2 роки тому +8

    Wow i never know how to prove the summation of n well now i know thanks to you

  • @hijeffhere
    @hijeffhere 2 роки тому +15

    I remember proving this by mathematical induction back in high school.
    Now, I can't even do simple math lol

    • @mynerdaccount5076
      @mynerdaccount5076 2 роки тому +6

      Maybe because you started watching anime, anime ruins everything and the community is toxic

    • @isaacm6052
      @isaacm6052 2 роки тому +1

      No U

  • @alikanan7011
    @alikanan7011 2 роки тому +6

    One of my favorites mathematicians ❤️❤️❤️

  • @vijaykulhari_IITB
    @vijaykulhari_IITB 2 роки тому +2

    This is really amazing 🤘🤘

  • @c6ldass781
    @c6ldass781 2 роки тому +2

    bro I'm already watching this while I was drunk you're just making it more confusing

  • @jagdishsolanki8928
    @jagdishsolanki8928 2 роки тому

    Please make a full detailed video on Math Induction topic

  • @markkinnard796
    @markkinnard796 2 роки тому +1

    I have a shirt from Dr. Mike Penn with that equation on it. How come I can't buy a black 2.718 shirt? I only see blue on your site.

    • @blackpenredpen
      @blackpenredpen  2 роки тому

      For some reasons it was gone. But now I just re-added it. Thanks for letting me know.

    • @markkinnard796
      @markkinnard796 2 роки тому

      @@blackpenredpen thanks. just ordered one

  • @iwouldntdare3439
    @iwouldntdare3439 2 роки тому +3

    Please help me solve this.
    Is there a way to isolate x??
    xlog(b/a)=log(c*(a^-x)-1)

    • @SimonClarkstone
      @SimonClarkstone 2 роки тому

      I think you can bring the x inside the log on the left as an exponent, then do something to remove the log on both sides to leave you with something easier to work with. You'd have to be careful about that though as (e.g.) what if a, b, or c are negative?

    • @iwouldntdare3439
      @iwouldntdare3439 2 роки тому

      @@SimonClarkstone
      Thanks
      I'm looking at equations in the form
      a^x +b^x =c

    • @bscutajar
      @bscutajar 2 роки тому

      No x cannot be made subject of the formula unless the base is the same

  • @Youssef-nb2qg
    @Youssef-nb2qg 2 роки тому

    Best calculus teacher ever🌷🌹

  • @BabyXGlitz
    @BabyXGlitz 2 роки тому +2

    computationally (1+2+3+...+n)^2 is more efficient

    • @Liam-pf7ih
      @Liam-pf7ih 2 роки тому

      computationally 1/4 * n * (n+1) is most efficient lol

    • @sharpnova2
      @sharpnova2 2 роки тому

      definitely

    • @BabyXGlitz
      @BabyXGlitz 2 роки тому

      @@Liam-pf7ih actually n^2*(n+1)^2/4

  • @lukandrate9866
    @lukandrate9866 2 роки тому +1

    That's a cool proof

  • @nikos4677
    @nikos4677 3 місяці тому

    Proving it with induction feels like taking the easy way out.

  • @andreaq6529
    @andreaq6529 2 роки тому +12

    Is this only true with natural numbers?
    Because like
    (a + 2a + 3a)² = 36a²
    and
    a³ + 8a³ + 27a³ = 36a³
    and a² ≠ a³
    Oh wait that means that the identity is true if the "a" is equal to 1 or 0. Nice

  • @abeervats1587
    @abeervats1587 Рік тому

    👍🏻very nice !!

  • @hetanshpatel510
    @hetanshpatel510 2 роки тому +1

    (3 + 3 + 3)^2 was not just a pure coincidence. It was just (2 + 3 + 4)^2 which again forms a series of n(n+1)/2. Math always has a reason for everything

    • @siphamandlamazibuko1424
      @siphamandlamazibuko1424 2 роки тому

      so does that mean that no matter what our first term is, as long as it is less than n, the equation will be satisfied?

  • @jamenneel342
    @jamenneel342 2 роки тому

    This is why I love proofs

  • @Inspirator_AG112
    @Inspirator_AG112 2 роки тому +1

    I found visual proofs of this on the main math sub-Reddit.

  • @SuperYoonHo
    @SuperYoonHo 2 роки тому

    This was so cool

  • @higgsboson2123
    @higgsboson2123 2 роки тому

    What I really learned is how to write using 2 different coloured pens. Thx👍

  • @threepointone415
    @threepointone415 2 роки тому

    The Algebraic Power Rule

  • @tambuwalmathsclass
    @tambuwalmathsclass 2 роки тому

    GOAT

  • @anasabuammar3355
    @anasabuammar3355 2 роки тому +3

    Can you explain why the limit when x approaches 0 of sin(x)/x is 1

    • @PhysiKarlz
      @PhysiKarlz 2 роки тому

      That is one of the most covered questions in mathematics on the internet....

    • @tejasacharya9894
      @tejasacharya9894 2 роки тому

      Bcoz sinx is equal to x for veeery smaaal x
      And it is actually 0.99999999..... so
      limit x tending to zero for [sinx/x] is equal to zero where [°]is greatest interger function or floor function... Hope it helps...

    • @theuserings
      @theuserings 2 роки тому

      It involves the squeeze theorem and some geometry, theres alot of video about it

    • @theuserings
      @theuserings 2 роки тому

      Also i think bprp already made a video about the proof a few years ago

    • @rogerkearns8094
      @rogerkearns8094 2 роки тому

      Yes.

  • @mathemitnawid
    @mathemitnawid 2 роки тому

    Do you have a video about / proof for the pascals identity?
    sum: 1^q + 2^q + … + n^q = ?
    n and q are positive integers

  • @konoveldorada5990
    @konoveldorada5990 2 роки тому +2

    Explanation in brief: sum of n^3 =
    (n(n+1)/2) ^2
    But 1+2+3..=n(n+1)/2
    Therefore, (1+2+3..) ^2= sum of n^3

  • @programmeraryanmishra9336
    @programmeraryanmishra9336 2 роки тому +1

    What is the time period of zero function??pls explain by proof!!

  • @pranavamali05
    @pranavamali05 2 роки тому

    Nice one

  • @arequina
    @arequina 2 роки тому

    I was just watching this on my instagram from another math guy. Love it.

  • @James_Moton
    @James_Moton 2 роки тому +2

    Are there any other integer values of m != 2 and n != 3 such that (1+2+3)^m = 1^n + 2^n + 3^n ?

    • @blackpenredpen
      @blackpenredpen  2 роки тому +3

      Only 1,1 and 2,3 work

    • @Apollorion
      @Apollorion 2 роки тому +1

      Sure: m=n=1 will do.

    • @jansmotlacha1077
      @jansmotlacha1077 2 роки тому

      @@blackpenredpen And this is really proven? Or is it a statement similar to Last Fermat Theorem whose proof was a mystery for 400 years?

  • @TheFlairRick
    @TheFlairRick 2 роки тому

    I watched your video where at the end it showed SQRT(18) - SQRT(8), and I got it; but when I plugged my own numbers of SQRT(29) - SQRT (12) I was still stumped.

  • @energy-tunes
    @energy-tunes 2 роки тому +1

    Bro summer holidays really got you mad bored huh 😂

  • @EruIluuvatar
    @EruIluuvatar 2 роки тому +1

    At 7:25 you wrote a red "+1" which should have been a blue one. Terrible misteak!!! :-o

  • @Jakeus101
    @Jakeus101 2 роки тому

    (n(n+1))/2 is also the formula for triangular numbers, how interesting.

  • @nomicnevermic
    @nomicnevermic 2 роки тому +1

    hold on, why can you just draw a square and fill it at the end of a proof? I've just now seen that done in my new school books too, what does it mean?

    • @TheOiseau
      @TheOiseau 2 роки тому +7

      That little black square is just a common textbook symbol for "end of proof" (sometimes also seen at the end of an example). It means the same thing as QED.

  • @muhammadfarhan9407
    @muhammadfarhan9407 2 роки тому

    Does the pattern continues such as (1 + 2 + 3)^3 = 1^4 + 2^4 + 3^4 + 4^4?

  • @jus12chat
    @jus12chat 2 роки тому +1

    does this work if you start with a number higher than 1?

    • @williamwilliam4944
      @williamwilliam4944 2 роки тому

      Yep. Works for all positive integers. That's the point of an induction proof

    • @bscutajar
      @bscutajar 2 роки тому

      @@williamwilliam4944 No it does not work. 5 squared is not equal to 2 cubed plus 3 cubed

    • @williamwilliam4944
      @williamwilliam4944 2 роки тому

      @@bscutajar that isn't what the proof is saying, now is it?

  • @adipy8912
    @adipy8912 2 роки тому

    I haven't seen that proof for the triangular number formula before.

  • @joseantoniobouzoalvarez3030
    @joseantoniobouzoalvarez3030 2 роки тому

    8!(36+8):2......8!(36-8):2......9!

  • @vijaykulhari_IITB
    @vijaykulhari_IITB 2 роки тому +2

    Where is your Pokemon

  • @andrewmetasov
    @andrewmetasov 2 роки тому

    Wow that's a cool formula!
    Proving something using Math. Induction sometimes feels like cheating

    • @TheOiseau
      @TheOiseau 2 роки тому

      It feels like cheating because you can only use induction once you know the formula from another source. Induction can't find you the formula, it can only prove that the formula is true once you already know it.

  • @hhktutorials9371
    @hhktutorials9371 2 роки тому

    Is this only applicable on numerical numbers or can we express (a+b+c)^2 as a³+b³+c³ as well because when I searched this on net I didn't get any results

    • @adiaphoros6842
      @adiaphoros6842 2 роки тому

      The sum of powers shown in the video is Faulhaber’s formula for p = 1 and p = 3. The formula only works for positive integers.

  • @saharhaimyaccov4977
    @saharhaimyaccov4977 2 роки тому

    7:10 this formula can work with complex num like (I+(i+1)+(i+2)...(I+k) )² equal to i³+(I+1)³....+(I+k)³ ???

    • @MrUwU-dj7js
      @MrUwU-dj7js 2 роки тому +2

      I don't think so
      Let k=0
      So (i)^2 = i^3
      Which is false

  • @TurboGamasek228
    @TurboGamasek228 2 роки тому

    you can see output of the formula on channel Boris Trushin, its easy

  • @equal7958
    @equal7958 2 роки тому +1

    #blackpenredpen There should be a whole square instead whole cube in your description

  • @FaizanAli-iv9dm
    @FaizanAli-iv9dm 2 роки тому +1

    Awesome

  • @pfeilspitze
    @pfeilspitze 2 роки тому

    I assumed it relied on the classic 1+2+3=1*2*3. Would be a better intro with another term, to get out of the misleading special case.

  • @edsonstarteri6313
    @edsonstarteri6313 2 роки тому

    Because int x^3 dx = (int x dx)^2.

  • @chessthejameswei
    @chessthejameswei 2 роки тому +1

    For anyone taking Calc AB/BC or Stats, what did you get on the AP Exam? I got a 5! (a 5 not 120 😂)

  • @Yesytsucks
    @Yesytsucks 2 роки тому

    When he said that the summ is n*(n+1)/2 i stopped, though about it, figured it out, continued watching *and then he explained the whole thing*

  • @golusingh721
    @golusingh721 2 роки тому

    Only one confusion...in pmi base value starts for n=1 then let n=m then to prove true for n=m+1.But here why n=0...Can anyone explain??

    • @herbie_the_hillbillie_goat
      @herbie_the_hillbillie_goat 2 роки тому +1

      You can start with any integer. It doesn't have to be 1 or even positive really. The idea is to prove that if it's true for SOME n, it must be true for n+1. So if it's true for n=-3, it must be true for -2. Now since it's true for n=-2, it has to be true for n=-1, and so on.

  • @dbolger
    @dbolger 2 роки тому +1

    Couldn’t this also be explained as ((1^1)+(2^1)+(3^1))^2. You could add the sum of the powers

    • @martinepstein9826
      @martinepstein9826 2 роки тому

      That's what I was thinking. You have ^1 on the inside and ^2 on the outside so clearly when you combine them you get ^3.

    • @bscutajar
      @bscutajar 2 роки тому

      That's not what is happening. Firstly it is a coincidence, secondly powers would multiply not add up.

  • @ChristopherEvenstar
    @ChristopherEvenstar 2 роки тому

    One of my friends depises this prank. He was irate. He is passionate, but hateful.

  • @CM-NightDK
    @CM-NightDK 2 роки тому

    if i had friends they would find this funny.

  • @edwardhuff4727
    @edwardhuff4727 3 місяці тому

    ua-cam.com/users/shortsO_5CnZh-G7Q?si=xtT9TqqUFjUi-69u
    Geometric demonstration for n = 4 base case. Can you prove the induction step geometrically?

  • @anujain3350
    @anujain3350 2 роки тому

    Is this for real ?

  • @hellopleychess3190
    @hellopleychess3190 2 роки тому +2

    this is very interesting but it took me a while to follow the calculations.
    I haven't done this in a while and the trick was surprising

  • @kyamb3890
    @kyamb3890 2 роки тому +9

    230 - 220 x 0.5 = 5!
    This is definitely my favorite one

    • @abj136
      @abj136 2 роки тому

      Multiply both sides by 2: 230 - 220 = 10. Math xheck out ;)

    • @purrplaysLE
      @purrplaysLE 2 роки тому

      You probably won't believe it, but the answer is 5!

  • @itamar_da_god5651
    @itamar_da_god5651 2 роки тому

    Retro 14's 🔥

  • @CasualGaming20
    @CasualGaming20 2 роки тому

    Math

  • @animegooo307
    @animegooo307 2 роки тому +2

    🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥

  • @divyanshsharma6791
    @divyanshsharma6791 2 роки тому

    It's my humble request to you
    Can you pls do a series on partial differential equations ?
    Edit : I forgot the " ? " in my comment .

  • @bscutajar
    @bscutajar 2 роки тому

    Why is this a prank? What's the prank? This is just proving an identity

  • @johnny_eth
    @johnny_eth 2 роки тому

    Interesting,could you turn this into a generic problem, eg,
    Given a set of integers S=a,b,c,...
    Find all n,m such that
    (sum S)^n=sum(S^m)
    And start with the trivial examples like {1,2}, {1,2,3},{2,3},{1,2,3,4}...
    And try to see if there are patterns.

  • @HoSza1
    @HoSza1 2 роки тому +1

    Find all the positives? Maybe you mean all positive integers, bc there are infinite many of positive (real) triples exist that satisfies (x+y+z)^2=x^3+y^3+z^3

  • @HYEOL
    @HYEOL 2 роки тому

    Not surprising to me😅

  • @modelmath
    @modelmath 2 роки тому +5

    you kidding me right I discovered it when I am 14 years in a math competition

  • @johnnolen8338
    @johnnolen8338 2 роки тому

    Of course it is. Quit being astonished by the mundane.

  • @girly_trickster
    @girly_trickster 2 роки тому

    I dont know anyone that is even interested in math

  • @idvbane8580
    @idvbane8580 2 роки тому

    1🥰

  • @yahyayigiter887
    @yahyayigiter887 2 роки тому

    Funny

  • @HoSza1
    @HoSza1 2 роки тому

    very old...

  • @theuserings
    @theuserings 2 роки тому

    Hello

  • @pneujai
    @pneujai 2 роки тому

    just my opinion, i dont like facial expressions on thumbnails, they make me cringe

  • @claudiamaquedadiaz4082
    @claudiamaquedadiaz4082 2 роки тому

    i dont understanda why is this a prank. is it supposed to be funny?😂😂😂

  • @johnhoe
    @johnhoe 2 роки тому

    Hi