Sum of first n cubes - Mathematical Induction

Поділитися
Вставка
  • Опубліковано 13 січ 2025

КОМЕНТАРІ • 149

  • @richardleveson6467
    @richardleveson6467 Рік тому +34

    A concise presentation in clear unaffected English and a minimum of theatrics. Bravo!

  • @kangsungho1752
    @kangsungho1752 Рік тому +67

    Beauty of Mathmatical Induction

  • @renesperb
    @renesperb Рік тому +34

    A very good example ! You do it very clearly in a nice handwriting.

  • @davidgagen9856
    @davidgagen9856 Рік тому +17

    If you simplify the RHS at the very start to [n(n+1)/2]^2 which of course becomes [k(k+1)/2]^2 then it becomes slightly easier to follow maybe since you can state at the WTS part that RHS needs to be [(k+1)(k+2)/2]^2 at that point. You know what ur chasing a bit sooner. Love these videos.

  • @dougaugustine4075
    @dougaugustine4075 7 місяців тому +1

    Sorry, I got lost in the leap shown at around the 7:00 mark. Gonna have to look at it again more closely.

  • @stephenlesliebrown5959
    @stephenlesliebrown5959 Рік тому +8

    Another superb presentation 😊

  • @cyruschang1904
    @cyruschang1904 Рік тому +6

    We need to show if 1^3 + 2^3 + 3^3 ... + k^3 = (1 + 2 + 3 ... + k)^2, then 1^3 + 2^3 + 3^3 ... + k^3 + (k + 1)^3 = (1 + 2 + 3 ... + k + (k + 1))^2
    First we calculate the difference
    (1 + 2 + 3 ... + k + (k + 1))^2 - (1 + 2 + 3 ... + k )^2 = 2(k + 1)(1 + 2 + 3 ... + k ) + (k+1)^2 = 2(k + 1)(k(1+ k)/2 ) + (k+1)^2 = k(1+ k)^2 + (k+1)^2 = (k+1)^2 (k + 1) = (k + 1)^3
    Since (1 + 2 + 3 ... + k + (k + 1))^2 = (1 + 2 + 3 ... + k )^2 + (k + 1)^3
    and
    (1 + 2 + 3 ... + k )^2 = 1^3 + 2^3 + 3^3 ... + k^3
    We showed
    (1 + 2 + 3 ... + k + (k + 1))^2 = 1^3 + 2^3 + 3^3 ... + k^3 + (k + 1)^3

  • @tahajalilian2002
    @tahajalilian2002 5 місяців тому

    Your teaching style is so amazing

  • @michaelbaum6796
    @michaelbaum6796 Рік тому +3

    Very nice Induction Proof - 🙏 thanks a lot.

  • @RichardCorongiu
    @RichardCorongiu 9 місяців тому

    You shoulda been a teacher...how relaxed and succinct...in other words.. a genius..nice work..
    .

  • @jorgepinonesjauch8023
    @jorgepinonesjauch8023 Рік тому +1

    😮 se sabía que en un momento tenía que utilizar sumatorias conocidas, muy buena demostración!!

  • @satlujpremi
    @satlujpremi 2 місяці тому

    absolutely loved your explanation 💜

  • @HeirTrap
    @HeirTrap Рік тому

    best handwriting ive seen in a while (30+years)!

  • @downrightcyw
    @downrightcyw Рік тому +1

    Very nice mathematics teacher who will not blame or shout at students who got poor grade in Mathematics. Unlike our eastern strict Mathematics teachers.

  • @mohamedlekbir6086
    @mohamedlekbir6086 Рік тому +2

    Bravo professeur. J'aime bien.

  • @ralphw622
    @ralphw622 10 місяців тому

    Thank you for this, I had seen the relationship and
    wondered how it was proved. Your presentations are superb.

  • @richardmullins44
    @richardmullins44 3 місяці тому

    looks very interesting!!!! congratultions on selecting this example !

  • @أبوشاهين-ت6ك
    @أبوشاهين-ت6ك 9 місяців тому +1

    Amazing Prof 🎉

  • @Kid.Nimbus
    @Kid.Nimbus Рік тому

    This is my first video I've seen of yours. Subscribed as soon as video was dond

  • @dronevluchten
    @dronevluchten Рік тому +4

    Wow. I have studied long ago math at the university of Utrecht (Netherlands) but this was unknown to me. 😊

  • @Tairyokenois
    @Tairyokenois 11 місяців тому

    It's interesting. It works for other multiples as well (in the video's case, it's a series of multiples of 1) but we have to multiply by an additional value (in the video's case, it's x1, which is why it's not shown):
    Here's a series of multiples of 7: 7^3 + 14^3 + 21^3 + 28^3 = (7+14+21+28)^2 x 7
    Here's for 14: 14^3 + 28^3 + 42^3 + 56^3 + 70^3 + 84^3 = (14+28+42+56+70+84)^2 x 14
    Here's for 166: 166^3 + 332^3 + 498^3 + 664^3 + 830^3 = (166+332+498+664 + 830)^2 x 166
    In general it's: r^3 + (2r)^3 + (3r)^3 + (4r)^3 +...+ (nr)^3 = r(r + 2r + 3r + 4r +...+ nr)^2
    where r is the common ratio and n is the number of terms. It only works if it follows specifically this general form, if it doesn't start at (r times 1)^3 then you'd have to subtract terms out from the answer.

  • @wagnerrissardo
    @wagnerrissardo 13 днів тому +1

    Nice proof!
    Congratulations for the chanell!
    Happy ∑[k=0, 9] k^3

  • @johnconrardy8486
    @johnconrardy8486 6 місяців тому

    teacher you are the best

  • @s.hariharan6958
    @s.hariharan6958 10 місяців тому

    YOU BEATED MY MATHS TEACHER 😭,THANK YOU FOR GOOD PRESENTATION ❤❤...

  • @AZALI00013
    @AZALI00013 Рік тому +3

    amazing video !!!
    I'm very glad you covered this identity haha
    coincidentally, I was just walking a tutee through this one a couple days ago !!

    • @hvgaming8379
      @hvgaming8379 Місяць тому

      hello there, suprised to see u here

  • @baselinesweb
    @baselinesweb 7 місяців тому

    Wpi;d it be incorrect to treat both sums as integrals and then equate? The you get n^4/4=(n^2/2)^2. This seems to prove it. What am I missing?

  • @thopita
    @thopita Рік тому +1

    Beautiful problem ❤

  • @ccc40476
    @ccc40476 Рік тому +1

    If this formula is known, it can indeed be proved. But how did the first person to figure out this formula do it?

    • @keescanalfp5143
      @keescanalfp5143 11 місяців тому +1

      think, suppose that when she was young like we were once, she tried on a piece of paper the first cubes
      1 _ 8 _ 27 _ 64 _ 125 _ 216 ..
      then maybe tried their row of differences ,
      7 _ 19 _ 37 _ 61 _ 91 ..
      weird somehow , but yet isn't there a kind of regularity between these ,
      12 _ 18 _ 24 _ 30 ..
      well that is , there could be more than one interesting thing about or between or around them .
      then , on another day , trying their sums like in the video
      1+8 , which produces 9 . and
      1+8+27 , which produces 36 , hey nice.
      and
      1+8+27+64 , producing 100 . uff, too nice, what's up here . what could be the buzz. all of them seem to be squares . squares of what ? what's between them ? etcetera .. triangle numbers ? how ? why ? and so on .
      all hypothetical , out of childish curiosity , nothing more .

    • @ccc40476
      @ccc40476 11 місяців тому +1

      I asked chatgpt, and the first person to figure out the formula was Euler, a great mathematician.

    • @keescanalfp5143
      @keescanalfp5143 11 місяців тому

      ​@@ccc40476,
      so beautiful that it was him !
      does c.gpt know *How* the man came upon the formula or even upon the searching for it .

  • @Calcprof
    @Calcprof Рік тому

    My favorite surprising result easily proved by induction.

  • @X-Joker7
    @X-Joker7 Рік тому

    Love from India 🇮🇳❤

  • @gilbertoamigo7205
    @gilbertoamigo7205 Рік тому

    Fantastic! Tanks, teacher.

  • @avalagum7957
    @avalagum7957 Рік тому +1

    My idea before watching the video:
    n = 1: correct
    n = 2: correct
    Suppose that 1^3 + ... + n^3 = (1 + ... + n)^2. We need to prove that 1^3 + ... + n^3 + (n + 1)^3 = (1 + ... + n + n+1)^2
    (1 + ... + n + n+1)^2 = (1 + ... + n)^2 + 2(1 + ... + n)(n + 1) + (n + 1)^2
    We need to prove that (n + 1)^3 = 2(1 + ... + n)(n + 1) + (n + 1)^2 which is easy to prove if we know 1 + ... + n = n(n + 1)/2

  • @user-qb8fp8oj1p
    @user-qb8fp8oj1p Рік тому

    U R a positive energy M. Teacher 🤩Merry Christmas

  • @raminrasouli191
    @raminrasouli191 11 місяців тому

    Thank you very much. You are great.

  • @wouterzoons1843
    @wouterzoons1843 Рік тому +1

    That was beautiful!

  • @ingénieureinformatique-h5y
    @ingénieureinformatique-h5y 2 місяці тому

    you do it perfectly

  • @khl0513
    @khl0513 Рік тому

    You inspire me, great!

  • @binyaminaharoni1743
    @binyaminaharoni1743 Рік тому +1

    Awesome lesson. The guy is also very cute. 😅

  • @davidbrisbane7206
    @davidbrisbane7206 3 місяці тому

    If you compute the sum from r = 1 to n of Σ(r + 1)³ - Σr³ in two different ways, you can deduce the formula for Σr².
    Hint 1: Σ (r + 1)³ - Σr³ = Σ3r² + Σ3r + Σ1
    Note: Σ1 = n and Σr = n(n + 1)/2.
    Hint 2: Σ(r + 1)³ - Σr³ =
    (n + 1)³ - 1³

  • @tuanmanhtoan
    @tuanmanhtoan Рік тому +1

    Very nice

  • @nimaalz4513
    @nimaalz4513 Місяць тому

    how can we calculate the second part without knowing it ?

  • @niloneto1608
    @niloneto1608 Рік тому +5

    Induction is easy. I wanna see someone proving identities like this and 1²+2²+3²+...+n²=n(n+1)(2n+1)/6 by deduction, as those expressions don't come from thin air.

    • @achomik1999
      @achomik1999 Рік тому

      They do:
      Let f(x)=e^x + e^2x + e^3x +...+ e^nx.
      Geometric sequence, so f(x)=e^x*(e^nx - 1)/(e^x - 1).
      f(x)=e^nx - 1 + (e^nx - 1)/(e^x - 1)
      What interests us is the limit of k-th derivative of f(x) as x->0.
      Examples:
      Sum of n 1's (1=1⁰=2⁰=n⁰; k=0) is lim as x->0 of e^x*(e^nx - 1)/(e^x - 1)=lim as x->0 of n*e^nx/e^x=n*e^(0*n)/e^0=n*1/1=n (way to define natural numbers?)
      It requires more calculations for bigger k.

    • @achomik1999
      @achomik1999 Рік тому +1

      @@samueldeandrade8535
      Yes.
      k-th derivative of f(x)=e^x + e^(2x) +...+e^(nx) is e^x + (2^k)e^(2x) + (3^k)e^(3x) +...+ (n^k)e^(nx); plug in x=0 to get 1+2^k+3^k+...+n^k.
      f(x) can be written as (e^x)(1-e^(nx))/(1-e^x), here you cannot plug in x=0 but we can look for the limit as x->0 using d'Hospital's rule.

    • @achomik1999
      @achomik1999 Рік тому +1

      @@samueldeandrade8535 Yeah, quite cool. If one integrated the right side of the equation, they would get stuff like 1+1/2+1/3+...+1/n or even the Riemann Zeta function in a limit.

    • @shadrana1
      @shadrana1 11 місяців тому +1

      If you use Difference Theory these formulae are easy to prove.Note my post on this current proof.
      After you do the difference spadework,
      You arrive at a=1/3,b=1/2,c= 1/6 and d=0.
      S2(n)=1^2+2^2+3^2+..........+n^2= n^3/3+n^2/2+n/6+0*d
      =(2n^3+3n^2+n)/6
      =n(2n^2+3n+1)/6
      =n(n+1)(n+2)/6 which is the formula we need QED.
      for the S4(n) you will need to solve a 5X5 simultaneous group.
      The hard bit is building up and solving the equations without making mistakes.

    • @matheusjahnke8643
      @matheusjahnke8643 6 місяців тому

      Let's start with a little algebra fact:1
      (k+1)³-k³=3k²+3k+1
      We will add all versions of this equality for k=1,2,...,n
      sum[k from 1 to n](k+1)³-k³=sum[k from 1 to n] (3k²+3k+1)
      First let's work a little on the Left Hand Side
      sum[k from 1 to n](k+1)³-k³=(2³-1³) + (3³-2³) + .... + ((n+1)³-n³)
      To make the next thing clearer, I will invert the order of summation:
      sum[k from 1 to n](k+1)³-k³= ((n+1)³-n³) + (n³-(n-1)³) + ((n-1)³ - (n-2)³) + .... + (2³-1³)
      Note how the -n² can be cancelled with the +n² just after? This goes for almost every term, except (n+1)² and -1²... this is an example of a *telescopic sum*;
      sum[k from 1 to n](k+1)³-k³= (n+1)³ + (-n³ + n³) + (-(n-1)³ + (n-1)³) + (-(n-2)³ + (n-2)³) + .... + (-2³ + 2³) - 1³
      sum[k from 1 to n](k+1)³-k³=(n+1)³-1=n³+3n²+3n
      Take note on that... we will come back to this expression later
      Now let's work on the Right Hand Side.
      Given that addition and multiplication have some properties(commutativity, associativity and distributive)... we can
      sum[k from 1 to n] (3k²+3k+1) = 3(sum[k from 1 to n] k²) + 3(sum[k from 1 to n] k) + (sum[k from 1 to n]1)
      sum[k from 1 to n]1 is just 1+1+1+...+1, but n times... so n
      sum[k from 1 to n]k is 1 + 2 + 3 + .... + n, which is n(n+1)/2... with this method you must know the sum of the first n 0,1,....(p-1)-powers before getting to the formula for the sum of p-powers
      sum[k from 1 to n] k² is what we want.. call it S
      After all our work on the sides... make them equal:
      n³+3n²+3n = 3S + 3n(n+1)/2 + n
      Then it's just solving for S.
      Because I did (k+1)³-k³ in the start... this will get us the sum of k²;
      If we did (k+1)²-k, we'd have the sum of k's;
      If we did for (k+1)⁴-k⁴ in the start... we would have an equality between (n+1)⁴-1⁴, the sum of k³, the sum of k², the sum of k; A bit messy calculations but you can solve for the sum of k³ after you know the sum of k² and the sum of k;

  • @benmooiman1174
    @benmooiman1174 Рік тому +1

    Mooi bewijs door twee keer toe te passen: 1^2 +2^2 + … n^2 = n * (n +1) / 2. Fraai!! 👍

  • @jasdlf
    @jasdlf Рік тому

    Always note that “it is true for all positive real numbers”!!

  • @tomdekler9280
    @tomdekler9280 Рік тому

    I doubt anyone at this level still needs to be explained why 1+2+3...+n = n(n+1)/2 but just in case.
    First we write the series:
    1+2+3...+n
    Call this series p
    Then beneath it we write the same series but backwards
    n+n-1+n-2...1
    Call this series q
    Now we know both of these series have the same amount of terms, n of them.
    So we can add these series term by term, and they will be equal to p+q.
    Take the first two terms and add them, that's 1 + n
    The second two terms added is 2 + n-1 = 1 + n
    The third two terms added is 3 + n-2 = 1+n
    And this pattern continues, all the way to the last terms that also add to 1+n
    so you have n groups of terms that are all equal to (n+1), leading to a total addition of n(n+1)
    You wrote the series twice, once forward and once backwards, and you added them.
    Therefore, the sum of one of these series is n(n+1)/2

  • @shadrana1
    @shadrana1 11 місяців тому

    You can use difference theory to prove this.
    (1) S1(n)= 1^1+2^1+3^1+..........+n^1= n(n+1)/2 (n is a member of natural numbers)
    (2) S2(n)= 1^2+2^2+3^2+..........+n^2=n(2n+1)(2n+2)/6
    (3) S3(n)= 1^3+2^3+3^3+..........+n^3= ((n)(n+1)/2))^2 = (S1(n))^2
    (4) S4(n)= 1^4+2^4+3^4+..........+n^4= n(n+1)(2n+1)(3n^2+3n-1)/30.
    Let S3(n)= 1^3+2^3+3^3+............+n^3= (n(n+1)/2)^2= (1+2+3+.......+n)^2
    S3(6)=1^3+2^3+3^3+4^3+5^3+6^3 1+8+27+64+125+216= (n(n+1)/2)^2=441.........................(1)
    S3(1)=1^3=1
    S3(2)=1^3+2^3=9
    S3(3)=36,S3(4)=100,S3(5)=225,S3(6)=441
    1st difference= 8,27,64,125,216.
    2nd difference=19,37,61,91.
    3rd difference=18,24,30.
    4th difference=6,6
    In S3(n), n>6 the 4th difference will always be 6 no matter the magnitude of n.
    Therefore the difference table will always work for n.
    This suggests S3(n) is a fourth order polynomial,
    S3(n)=an^4+bn^3+cn^2+dn+e...............................................(2)
    S3(1)=1=a+b+c+d+e..............................................................(3)
    S3(2)=9=16a+8b+4C+2d+e...................................................(4)
    S3(3)=36=81a+27b+9c+3d+e...............................................(5)
    S3(4)=100=256a+64b+16c+4d+e........................................(6)
    S3(5)=225=625a+125b+25c+5d+e......................................(7)
    S3(6)=441=1296a+216b+36c+6d+e....................................(8)
    Sweep from (3)-(8),
    8 =15a+7b+3c+d...................................................................(9)
    27=65a+19b+5c+d.................................................................(10)
    64=175a+37b+7c+d...............................................................(11)
    125=369a+61b+9c+d.............................................................(12)
    216=671a+91b+11c+d..........................................................(13)
    Sweep from (9)-(13),
    19=50a+12b+2c....................................................................(14)
    37=110a+18b+2c..................................................................(15)
    61=194a+24b+2c..................................................................(16)
    91=302a+30b+2c..................................................................(17)
    Sweep from (14)-(17),
    18=60a+6b............................................................................(18)
    24=84a+6b............................................................................(19)
    30=108a+6b..........................................................................(20)
    Sweep away the bs,
    6=24a, >>>>>>>>>>>>>a=1/4,b=1/2,c=1/4,d=0,e=0
    Going back to (2),
    S3(n)=n^4/4+n^3/2+n^2/4=(n^4+2n^3+n^2)/4=(n^2(n+1)^2)/2^2=((n(n+1))/2)^2
    =(1^3+2^3+3^3+.................+n^3)=(1+2+3.............+n)^2 case proved.
    S3(6)=1^3+2^3+3^3+4^3+5^3+6^3 = 441 = (1+2+3+4+5+6)^2)= (21)^2 =441 in the S3(6) particular case.
    Thanks for the brilliant example of mathematical induction.
    Well done young man.

  • @hridayevyas8906
    @hridayevyas8906 Рік тому +1

    So... you used the expression to prove the expression? I dont get how that proves the initial proof if you just claim the main question as the very first step of the solution?

    • @PrimeNewtons
      @PrimeNewtons  Рік тому

      That is called mathematical induction. You make a claim and then show your claim is true.

    • @shadowclone9571
      @shadowclone9571 11 днів тому

      The base cases he showed, i.e. P(1), P(2), P(3) showed that the formula is true for the 1st 3 natural numbers. Induction says that if a formula is true for the first k numbers, then if you can prove that it is also true for the (k+1)th number, then you can conclude that it is true for all first n numbers.

  • @chengkaigoh5101
    @chengkaigoh5101 Рік тому +1

    Can we prove why induction works as a proof?

    • @keescanalfp5143
      @keescanalfp5143 11 місяців тому +1

      no, we can't . we just have to trust the so called 'farmer's logica'.
      the matter is :
      first: you show that the thesis is true for let's say n = 1 , or like this video,
      for n = 3 .
      second : you suppose, of course based on some expected outcome, but you just suppose that the thesis would be true for some value n = k .
      third : you try to prove mathematically , based on that supposition, that in that case the thesis will also be true for the next value n = (k + 1) .
      ((if not, then not, of course .))
      conclusion: after the proof succeeded, and convinced ,
      you can decide that based on the shown validity of the first value of n, i.e.
      n = 3, the thesis is also true for n = 4, and therefore for n = 5, because of this also for 6 and for each following natural number .
      all this based on the logical steps done from "second" to "third" , which provides a proof *Only* for the follower of the already *proven number* .
      in europe we call this kind of proof
      a proof by complete, or full, induction,
      inductio plena, vollständige Induktion, volledige inductie.
      good luck .

    • @chengkaigoh5101
      @chengkaigoh5101 11 місяців тому +1

      @@keescanalfp5143 thank you

    • @matheusjahnke8643
      @matheusjahnke8643 6 місяців тому

      There's kinda of a proof using the well ordering principle: any non-empty subset of ℕ has a least number;
      Given a statement P(n) over natural numbers n... also given P(0) and P(k) -> P(k+1)...
      Consider the set X={n ∊ ℕ | P(n) is false}... this is the set of all natural numbers n for which P(n) is false;
      We can prove that X=∅ by contradiction: assume X≠∅and consider p the least number of X(which it must exist under the well ordering principle).
      We know 0 ∉ X because it is given that P(0) is true... so 0

  • @Grassmpl
    @Grassmpl Рік тому

    You can derive such a formula using telescoping sums (i+1)^4-i^4.

  • @abdoulayesow6627
    @abdoulayesow6627 Рік тому

    That's clean as a proof.

  • @romaobraz4295
    @romaobraz4295 Рік тому

    wow that was beautiful

  • @mahinchawla8705
    @mahinchawla8705 Рік тому +2

    isnt this circular reasoning?

    • @adw1z
      @adw1z Рік тому +5

      Not at all, just induction

    • @RealLukifer
      @RealLukifer Рік тому +3

      The teacher first shows that the equation is true for n=1,n=2,n=3
      Then he shows that it is always true for n+1/the next integer. So n=4 is true, n=5 is true, etc. equation is true by induction.

  • @عامرالشعراء
    @عامرالشعراء Рік тому

    Wonderful

  • @iwallcool3377
    @iwallcool3377 Рік тому

    very clear. Bravo!

  • @AH-jt6wc
    @AH-jt6wc Рік тому

    can you please explain at which moment you verify the assomption that the proposition is true for n=k ? I mean everything is based on that. What if it is wrong for a "random" k ?

    • @PrimeNewtons
      @PrimeNewtons  Рік тому

      You don't. Because it was true for the first few tries, you assume it is true for n=k. If your assumption is false, mathematical induction would fail.

    • @tcmxiyw
      @tcmxiyw 3 місяці тому

      Remember, mathematical induction is an axiom about the natural numbers. It states that if P(n) is a proposition about the natural numbers, and (1) if P(1) is true, and (2) if P(k) is true implies that P(k+1) is true, THEN P(n) is true for every natural number n. In a proof by induction step (1) is called base case, and step (2) is called the inductive step. Step (2) is proved like any statement of the form “If A is true, then B is true”: you assume A is true and you prove B is true follows. This doesn’t mean that A is true or that B is true; only that A implies B. Similarly the induction step is not a statement about the truth of P other than “if P is true for some natural number then is is also true for the next natural number”. If you prove step (2) but cannot find a natural number for which P is true, then your induction proof fails. Suppose you prove P(1). Then the induction step gives us P(1) implies P(2) implies P(3) implies P(4) implies …. All the dominoes fall.
      In step (2), P(k) is called the induction hypothesis. Over many years of teaching mathematical induction the main point of contention with students is “If you assume P(k) is true aren’t you assuming what you want to prove?” No! What we are trying to prove is P(n) is true for every natural number. By assuming that P(k) is true (not even saying that it is true), we do so for the sole purpose of showing that P(k+1) is true follows.

  • @tim_cleezy
    @tim_cleezy Рік тому

    where did the cube go

  • @thuongcap2
    @thuongcap2 Рік тому

    Chứng minh bằng phương pháp quy nạp. Hay!

  • @MGmirkin
    @MGmirkin 9 місяців тому +1

    What about "the first n odd cubes"?

    • @MGmirkin
      @MGmirkin 9 місяців тому

      Just wondering from some stuff on Perfect Numbers & Mersenne Primes, which has it that a Perfect Number can be expressed as a sum of some number of consecutive odd cubes...
      e.g. 1^3+3^3+5^3+7^3, ... n^3 etc.
      Which I guess would basically just be (1+((1-1)*2))^3+(1+((2-1)*2))^3+(1+((3-1)*2))^3+(1+((4-1)*2))^3+...+(1+((n-1)*2))^3, where n is the ordinal of the odd cube (1st odd cube, 2nd odd cube, etc.)?

    • @MGmirkin
      @MGmirkin 9 місяців тому

      Would it just be the square of the sum of the [odd] numbers being cubed?
      Wolfram|Alpha seems to say "no." Not for cubes of first odd numbers. :\ Hmm...

    • @matheusjahnke8643
      @matheusjahnke8643 6 місяців тому

      ​@@MGmirkin you can add and subtract the sum of the first n even cubes:
      1³+3³+5³ + ... (2n-1)³=
      =1³+3³+5³ + ... (2n-1)³ + (2³+4³+...+(2n-2)³)-(0³+2³+4³+...+(2n)³)
      =(0³+1³+2³+3³+4³+....+(2n)³) -((2(1))³+(2(2))³+....+(2(n))³)=
      =(sum of cubes till 2n) - (2³2³1³+2³2³+2³3³+...+2³n³)
      =(sum of cubes till 2n) - 2³ (sum of cubes till n)

  • @vaibhavsrivastva1253
    @vaibhavsrivastva1253 Рік тому +1

    Impressive!

  • @tobyfitzpatrick3914
    @tobyfitzpatrick3914 Рік тому

    Pure Poetry..!

  • @oneli8492
    @oneli8492 Рік тому

    掌握技巧是狭隘的,掌握方法是有限的,掌握原理才是终极道理。

  • @JohnDoe-jj6yd
    @JohnDoe-jj6yd Рік тому +1

    Nice & elegant! Congrats, my friend👍

  • @wes9627
    @wes9627 9 місяців тому

    It is common knowledge that 1+2+...+n=n(n+1)/2 and 1^3+3^3+...+n^3=n^2(n+1)^2/4.
    Thus, [n(n+1)/2]^2=n^2(n+1)^2/4, and equality is verified.

  • @TakeAbackPak
    @TakeAbackPak Рік тому

    Wonderful!

  • @belhajabdellah2047
    @belhajabdellah2047 Рік тому

    Tanks. Very good !

  • @assiya3023
    @assiya3023 4 місяці тому +1

    Bravo!

  • @LeaderTerachad
    @LeaderTerachad Рік тому +1

    I don't know why but i thing you don't need to put thos intro in you're videos

  • @길위의인생-o7v
    @길위의인생-o7v Рік тому

    3: 50 the assume is sure? by what ?

  • @skwbusaidi
    @skwbusaidi 8 місяців тому

    Fir more calrification , when we get tge base case n=1 is true
    And assume that for n=k>=1 is true and found that it is true k+1. We done and some might say why.
    I tell them that if we assume that it is true for k and find out that it is true for k+1
    Then we go back to base case k=1
    If it is true for n=1 , it is true fir n=2"
    And if true for n=2, it true for n=3
    And we go on

  • @NickEdgington
    @NickEdgington Рік тому

    nice

  • @gaiatetuya92
    @gaiatetuya92 8 місяців тому

    嬉しそうな良い顔してるねえ。

  • @darcash1738
    @darcash1738 Рік тому

    Why does this happen?

  • @vitotozzi1972
    @vitotozzi1972 10 місяців тому

    Awesome!!!!

  • @michaelhargus4316
    @michaelhargus4316 Рік тому

    Interesting

  • @paytonholmes6019
    @paytonholmes6019 3 місяці тому

    I don’t understand the last step.

  • @alphalunamare
    @alphalunamare 9 днів тому +1

    Works in 2025 too :-) (n=9)

  • @Perception-2310
    @Perception-2310 10 місяців тому

    thank you air

  • @douwevandermaden2736
    @douwevandermaden2736 Рік тому +1

    i love it

  • @RoshanPaulThePhysicsShelter
    @RoshanPaulThePhysicsShelter 9 місяців тому

    It can be done without induction

  • @adgf1x
    @adgf1x Рік тому

    {n(n+1)2}^2 is resultant ans

  • @charl1878
    @charl1878 Рік тому

    Is there an alternative proof without using induction?

    • @tonybantu9427
      @tonybantu9427 Рік тому

      Yes. But you will need to know that there exist real numbers A, B, C,....SUCH THAT the sums of any given powers can be expressed in a closed form. As follows:
      1^3 + 2^3 + 3^3+...+n^3
      = A*n(n+1) + B*n(n+1)(n+2) +
      C*n(n+1)(n+3) = ( n^2.(n+1)^2 )/4
      LHS:
      In this case, (A,B,C) = (1/2, -1, 1/4), hence the cubes sum to:
      ( n^2.(n+1)^2 )/4
      But we also know that:
      1+2+3+....+n = n(n+1)/2
      RHS:
      Placing this value inside the right hand parenthesis gives:
      [ n(n+1)/2 ]^2
      Which simplifies to:
      n^2.(n+1)^2 / 2^2
      And is equal to the LHS.

    • @chiragraju821
      @chiragraju821 Рік тому

      @@tonybantu9427Why the strange choice of polynomials like n(n+1), n(n+1)(n+2)…? are they orthogonal or something?

  • @joseantoniodominguezllover7774

    Excelente

  • @Kid.Nimbus
    @Kid.Nimbus Рік тому

    This shit fires me up i love math

  • @tarciso21claudia28
    @tarciso21claudia28 Рік тому +1

    Maravilhoso !!!

  • @tomiokashw
    @tomiokashw Рік тому

    Perfect!

  • @assiya3023
    @assiya3023 4 місяці тому

    Demonstration par recurrence !

  • @michaelaristidou2605
    @michaelaristidou2605 6 місяців тому

    It's called Nicomachus Identity

  • @Aenderson23
    @Aenderson23 7 місяців тому

    I make de formula in another side of equation and get same result

  • @ĐạiLươngTriều
    @ĐạiLươngTriều Рік тому

    12:26 The face :))))

  • @sarita9
    @sarita9 Рік тому

  • @pedropiata648
    @pedropiata648 Місяць тому

    I proved that (n+1)^3= 2(sum of naturals)(n+1) + (n+1)^2 and the rest is history...

  • @alquinn8576
    @alquinn8576 11 місяців тому

    the way you write a term and then go back to wrap in in parentheses (instead of making parentheses right away) is anxiety-inducing 😮‍💨

  • @yangwang8038
    @yangwang8038 Рік тому

    数学归纳法嘛

  • @holyshit922
    @holyshit922 Рік тому

    Prove that (cos(x))^{(n)} = cos(x+n*pi/2)
    where n means nth derivative

    • @PrimeNewtons
      @PrimeNewtons  Рік тому

      Is this from differential equations?

    • @holyshit922
      @holyshit922 Рік тому

      @@PrimeNewtons No I used this while expanding exponential generating function of ChebyshovT polynomial E(x,t) = exp(xt)cos(sqrt(1-x^2)t) and i have seen lately this problem on one of the math forums
      In my opinion it is good exercise for mathematical induction if we are not allowed to use complex numbers

    • @holyshit922
      @holyshit922 Рік тому

      I used Chebyshov not Chebyshev because your transcription of this name is poor and leads to misreading
      Name of this guy written in cyrylic has two dots over last e which is read as yo but it is simplified to o
      (Maybe because it would be difficult to read sh and yo but i dont know why this simplification occured)

    • @PrimeNewtons
      @PrimeNewtons  Рік тому +1

      I'm looking at this video soon

  • @jotawski
    @jotawski Рік тому

    🌹🙏🌹

  • @師太滅絕
    @師太滅絕 11 місяців тому

    There is a graphical solution.
    Unfortunately, cannot be shown on comments.

  • @ToanPham-wr7xe
    @ToanPham-wr7xe Рік тому

    😮

  • @caothai1770
    @caothai1770 Рік тому

    Giống quy nạp newton nhỉ

  • @bhchoi8357
    @bhchoi8357 Рік тому

    😊

  • @user-qr7dw4hk6x
    @user-qr7dw4hk6x Рік тому

    Мат. Индукцией доказывается элементмрно