3 factoring tricks that you probably didn’t know

Поділитися
Вставка
  • Опубліковано 14 січ 2025

КОМЕНТАРІ • 176

  • @blackpenredpen
    @blackpenredpen  2 роки тому +77

    if you are a high school student living in the NorCal area, then you should definitely consider participating in the Berkeley Math Tournament on Saturday, November 5th, 2022. Please visit www.ocf.berkeley.edu/~bmt/ for more info.
    I will be going to BMT as a guest. We (meaning all my subscribers and myself) will be sponsoring BMT so they can offer scholarships of $1000 to the first place, $500 to the second place, and $300 to the third place. Big thanks to all my subscribers and special thanks to all my patrons and channel members. I know this is not possible without you guys! Also, Shout out to the whole BMT team (all the organizers and problem writers)! I can’t wait to meet everyone there!
    If you are also interested in sponsoring BMT and making an impact, please contact communications@bmt.berkeley.edu
    Thank you!

  • @wowZhenek
    @wowZhenek 2 роки тому +389

    For the second method it is arguably better to do this substitution: u = x^2 - 2x + 4, so you end up with (u-1)*(u+1) - 3 = u^2 - 4 = (u - 2)*(u + 2)

  • @MyOneFiftiethOfADollar
    @MyOneFiftiethOfADollar Рік тому +37

    Thanks for being honest about how the problems you create are "designed" to work out nicely if one applies the correct factoring technique. Lotta Love!

  • @rollingdigger19
    @rollingdigger19 2 роки тому +70

    You really understand my needs as a calculus student. Factoring are one of most obstacles I get stuck at.

  • @o_s-24
    @o_s-24 Рік тому +11

    Math is really satisfying when you get what's going on

  • @Golololololo
    @Golololololo 2 роки тому +36

    Thanks
    It's really great and your solutions are really intelligent😯 I liked the "double cross method" it's so useful👍🏼

  • @prefabrication
    @prefabrication Рік тому +2

    I've always had a problem with factoring as if I can't visualize it well. The second substitution method (specifically U-substitution) is a brand-new favorite of mine. Thank you very much!

  • @coltonboxell1960
    @coltonboxell1960 2 роки тому +5

    The cube trick really blew my mind! Thanks

  • @reddestglizzest
    @reddestglizzest Рік тому +1

    Your expressions being all proud about Makinh up your own methods makes me so happy😭I truly wish to achieve that soecific achievement

  • @autismspectrum-k7y
    @autismspectrum-k7y 2 роки тому +4

    for the 1st question i personally wouldve just polynomial long divide after factor theorem i didnt even know this sht is possible thxs

  • @spikypichu
    @spikypichu 2 роки тому +4

    These are some great techniques, thanks!

  • @owlsmath
    @owlsmath 2 роки тому +7

    That was great! I like the third problem best :)

  • @Enormousguy
    @Enormousguy 2 роки тому +2

    Thanks for teaching me this amazing method

  • @tedkaczynski2727
    @tedkaczynski2727 2 роки тому +20

    in the second one i considered to use u =x²-2x+4 so we will have (u+1)(u-1)-3 and we will have u²-2² :)) and then we will have (x²-2x+2)(x²-2x+6) easily and fast

    • @johnnykrocker5604
      @johnnykrocker5604 2 роки тому

      why, we will have u^2-2^2?

    • @gdtargetvn2418
      @gdtargetvn2418 2 роки тому

      @@johnnykrocker5604 yes, that's the point

    • @aayushswami3022
      @aayushswami3022 2 роки тому

      Nice

    • @Arbion26
      @Arbion26 2 роки тому

      @@johnnykrocker5604 because after we factor we'll have
      u^2-1-3
      Simplify
      u^2-4
      Rewrite 4 as 2^2
      u^2-2^2
      Now you can factor
      (u-2)(u+2)
      Now you should resubtitute, but im to lazy to do that

    • @johnnykrocker5604
      @johnnykrocker5604 2 роки тому

      @@Arbion26 ohh, yes! I already see this. Thanks bro.

  • @reidflemingworldstoughestm1394
    @reidflemingworldstoughestm1394 2 роки тому +2

    Very nice. Finding on your own is the best.

  • @SuperYoonHo
    @SuperYoonHo 2 роки тому +1

    Thank you sir!!!

  • @comingshoon2717
    @comingshoon2717 2 роки тому +2

    GREAT!!! Saludos desde Chile

  • @timeonly1401
    @timeonly1401 2 роки тому +31

    For #3:
    I also made the sum of cubes & factored, x^3+8 = (x+2)(x^2-2x+4) = (x+2)*u, where u = x^2 - 2x + 4.
    Then I rewrote the squared quadratic factor terms of u: (x^2-2x+5)^2 = [(x^2-2x+4) + 1]^2 = (u+1)^2 = u^2 + 2u + 1.
    The expression becomes: (x+2)u + (u^2 + 2u + 1) -1 = (x+2)u + u^2 + 2u = u ( u + x + 4) = (x^2 - 2x + 4)(x^2 - x + 8).
    Done!

    • @samueljehanno
      @samueljehanno Рік тому

      Wow

    • @jin_cotl
      @jin_cotl 6 місяців тому

      How did (x+2)u + u^2 + 2u = u (u +x+ 4) ??
      Shouldn’t it be u(u^2 + 2u + x + 2) ??

    • @jin_cotl
      @jin_cotl 6 місяців тому

      I think I got it, yes the answer is correct, steps are right too but it skipped like 3 steps so I got lost.

  • @SuryaBudimansyah
    @SuryaBudimansyah 2 роки тому +1

    Good luck with the tourney, may the best wins!!

  • @holyshit922
    @holyshit922 2 роки тому +4

    x^4-4x^3+12x^2-16x-15=0
    Firstly group the terms with x^4 and x^3 and rest
    (x^4-4x^3) -(-12x^2+16x-15)=0
    Now we complete the square the expression in leftmost bracket
    (x^4-4x^3+4x^2)-(-8x^2+16x-15)=0
    (x^2-2x)^2-(-8x^2+16x-15)=0
    Expression in the other bracket is quadratic and will be perfect square when its discriminant is equal to zero
    If we try to calculate discriminant now it may appear that discriminant is not equal to zero so
    we have to introduce parameter to make discriminant dependent on it
    We introduce parameter in such way that expression in leftmost bracket remains perfect square
    (x^2-2x+y/2)^2-((y-8)x^2+(--2y+16)x+y^2/4-15)=0
    Calculate discriminant and force it to be equal to zero
    (-2y+16)^2-4(y^2/4-15)(y-8)=0
    (y-8)(y^2-60)-4(y-8)(y-8)=0
    Cubic resolvent is partially factored and is easy to see that y=8 is solution
    (x^2-2x+4)^2-1=0
    (x^2-2x+3)(x^2-2x+5)=0
    x_{1}=1-sqrt(2)i
    x_{2}=1+sqrt(2)i
    x_{3}=1-2i
    x_{4}=1+2i
    This method for quartic is quite easy and never fails but usually needs to solve cubic equation (so called cubic resolvent)

  • @chadd9907
    @chadd9907 Рік тому

    thanks teacher this was very nice i am impressed especially last one.

  • @el_chippy_chips_20
    @el_chippy_chips_20 2 роки тому +3

    Nice video as usual

  • @EulersEye
    @EulersEye 8 місяців тому

    We are proud of you for figuring that out bro

  • @bryanjara477
    @bryanjara477 2 роки тому +6

    Mr. Blackpenredpen I really enjoy your videos and it blows my mind how you solve things, it’s just awesome!! Do you have any resource for me to practice this types of factorization? Greetings for Costa Rica 🇨🇷

  • @sayanjasu
    @sayanjasu 3 місяці тому +2

    This is the youtube channel Steven He's dad wishes he ran.

  • @finrodf8442
    @finrodf8442 Рік тому

    for the second you can use difference of squares

  • @SidneiMV
    @SidneiMV 8 місяців тому

    Nice tricks! Factorization is an art.

  • @pragyapathak3918
    @pragyapathak3918 2 роки тому

    really great sir 🙏🏻😊

  • @davidemasi__
    @davidemasi__ 2 роки тому +3

    Very useful video 😁

  • @KazACWizard
    @KazACWizard 2 роки тому +14

    First one you can just express it as f(x) and set it equal to the product of two quadratics. Expand coefficients and equate them to f(x)

    • @DaMoNarch91
      @DaMoNarch91 2 роки тому +6

      Not as quickly for a math tournament

    • @KazACWizard
      @KazACWizard 2 роки тому +1

      @@DaMoNarch91 it takes 2min

    • @MyOneFiftiethOfADollar
      @MyOneFiftiethOfADollar Рік тому +1

      Why couldn't you "just express it" as the product of a linear and a cubic? That requires some explanation.

  • @fabiangn8022
    @fabiangn8022 2 роки тому +1

    Buen video.👏🏽

  • @greensalad_1205
    @greensalad_1205 Рік тому +1

    Can I do the cross method for cubic formula?

  • @bananaman4705
    @bananaman4705 2 роки тому +3

    This video is very powerful

  • @giselleformon
    @giselleformon 2 роки тому +1

    Thank you sirrr :)

  • @اشکانمحمدی-ز1ث
    @اشکانمحمدی-ز1ث 6 місяців тому

    Very useful content

  • @Madtrack
    @Madtrack 2 роки тому +1

    Ty man. Ur top tier

  • @christopertianzon3232
    @christopertianzon3232 2 роки тому

    thank you sir!

  • @hazelqawamid
    @hazelqawamid Рік тому

    He's really happy because he made those equations 😭💗

  • @subodhmeena9918
    @subodhmeena9918 2 роки тому

    Great video...i liked it 👍👍

  • @MathwithMarker
    @MathwithMarker 2 роки тому +2

    That was perfect

  • @kennyfsTW
    @kennyfsTW Рік тому +1

    try x^15+1, it's very tricky but fun.

    • @blackpenredpen
      @blackpenredpen  Рік тому

      Interesting, what's your final answer?

    • @blackpenredpen
      @blackpenredpen  Рік тому

      WFA gives this: www.wolframalpha.com/input?i=factor+x%5E15%2B1

    • @kennyfsTW
      @kennyfsTW Рік тому +1

      @@blackpenredpen Just as WFA gives it.
      The point is that extracting x²-x+1 requires finding the roots of x¹⁰-x⁵+1.

  • @w__a__l__e
    @w__a__l__e 2 роки тому

    whats annoying is ive been subbed for a while but literally never see your work in my feed.. my brain has been missing this

  • @BraddersVee
    @BraddersVee 2 роки тому +6

    For Q1, how do you know to choose 5 and 3 rather than 1 and 15 ?

    • @robertpearce8394
      @robertpearce8394 2 роки тому +5

      As the video states, it is a guess but an educated guess as 5,3 looks mote likely than 15,1. You can try 15,1 but the answer will be incorrect and time is wasted as this is a competition. If you apply this method to problem 3 you have choices of 32,1 or 16,2 or 8,4. I tried 8,4 first as it seemed most likely.

  • @davidbrisbane7206
    @davidbrisbane7206 2 роки тому +5

    I knew someday we'd be double crossed by blackpenredpen.

  • @brendanconnelly1075
    @brendanconnelly1075 2 роки тому +1

    I run the math club at Acalanes high school in lafayette. We will be there!

  • @hardeepsinghg13
    @hardeepsinghg13 2 роки тому +3

    Will you conduct any online competition in future for students not in your country? Like India
    Pls try doing it some day, for Grade 12 students

    • @blackpenredpen
      @blackpenredpen  2 роки тому +1

      There’s a BMT online. U can check that out. 😃

  • @niom9446
    @niom9446 Рік тому

    Fantastic

  • @Bplayer1113
    @Bplayer1113 2 роки тому +2

    Hello, I am new subscriber. I saw your graduation picture and was wondering at what age did you graduate from UC Barkley😊

  • @enjoywatchingyoutube3346
    @enjoywatchingyoutube3346 2 роки тому +1

    2:33 shoudnt that be -2 and -3 ? cuz X1+X2=-p ?

    • @mcguides9176
      @mcguides9176 2 роки тому

      -2 and -3 are the roots but this is dealing with factorizing the polynomial is (x-(-2))(x-(-3)) so when the x coefficient is positive the roots are negative but when you factorize it the negative negative becomes a positive

  • @numericalcode
    @numericalcode 2 роки тому +2

    Props for the donation!

  • @dandark5554
    @dandark5554 2 роки тому +8

    I'm sorry to be stupid but i don't get one thing: Why didn't you consider 15 as 1x15 in the first method and went straight on 3x5?

    • @Sampreet.
      @Sampreet. 2 роки тому +2

      I guess one clue would be to look at the coefficients of the terms. They all have factors of 2 or 3 and 2 + 3 = 5 which is a factor of the constant term. These patterns suggest that it might be easier if we were to proceed with 3 * 5 instead of 1 * 15.

  • @jaii5955
    @jaii5955 Рік тому +1

    Double cross method is greatest method ever

  • @ahmadsalehin8329
    @ahmadsalehin8329 2 роки тому

    whoa i did this individully at home!!! 2:50

  • @FreemonSandlewould
    @FreemonSandlewould 2 роки тому +2

    Regarding the BMT are the scores race adjusted? Or is it fair where ONLY the work counts?

    • @blackpenredpen
      @blackpenredpen  2 роки тому

      I am not sure how they will score this time. You can find their contact info in the description

  • @michaelbaum6796
    @michaelbaum6796 Рік тому

    Great👍

  • @alejrandom6592
    @alejrandom6592 2 роки тому +1

    What happened to the "main dish" video?

  • @charlesgoodson5774
    @charlesgoodson5774 7 місяців тому

    Sir, I was wondering, if you have a quartic polynomial with integer coefficients, is it always factorable into the product of two quadratic polynomials (even if all roots are complex OR irrational real)? If so, will the coefficients in those quadratics be integers necessarily or might they be non-integer rational numbers?

  • @noelyvalisoarakotoarison7240
    @noelyvalisoarakotoarison7240 Рік тому +1

    Splendid, Thanks.. Can these methods become standard for resolving quartic polynomial

  • @jin_cotl
    @jin_cotl 6 місяців тому

    10:57 how did one (x^2-2x+4) go away? I’m so confused

    • @killpineapple
      @killpineapple 3 місяці тому +1

      It was present in both parts so we're able to factor it out

  • @EyeSooGuy
    @EyeSooGuy Рік тому

    Hey there. Can you explain to us what tetration, pentation, hexation, etc is? 😈

  • @cathaywongkt
    @cathaywongkt 2 роки тому +1

    Was a square sign missed in the 3rd (blue) expression in the thumbnail? (Sorry not sure if it is mentioned).

  • @tsaqifrizky5276
    @tsaqifrizky5276 2 роки тому

    Imagine facing bprp in a math tourney you'd get smoked 10 different ways (with an elegant proof for each)

  • @NarenderKumar-ll6xg
    @NarenderKumar-ll6xg 2 роки тому

    Sir find the factor of the equation X ^ 4 - 4 x cube + 8 x square minus 8 x + 4 equal to zero

    • @raghvendrasingh1289
      @raghvendrasingh1289 Місяць тому

      x^4 - 4 x^3 + 8 x^2 - 8 x + 4 = 0
      (x^2 - 2 x)^2 + 4 x^2 - 8 x + 4 = 0
      (x^2 - 2x)^2 + 4 (x^2-2x) + 4 = 0
      (x^2 - 2x +2)^2 = 0

  • @crazybanana0272
    @crazybanana0272 2 роки тому +1

    All the expo markers in the bottom right corner of the screen waiting for their turn to be used

  • @alham9656
    @alham9656 2 роки тому

    For the first method, does the answer need to end up being (u +- C1)(u +- C2) where c1,c2 are just constants? Ive tried workijg backwords with the u's not being equal and it doesnt really work out well, but for every one of tried in the form of yours it seems to work !

  • @tomshimon
    @tomshimon Рік тому

    In the first method/problem how did you know how to split the 15?

    • @jin_cotl
      @jin_cotl 6 місяців тому

      Basically, never use 1 times 15 unless there is no other choice like 1 times 3 or something.

  • @user-rx3iv7bl6b
    @user-rx3iv7bl6b 2 роки тому

    Why we factored 15 as 3 into 5 not 15 and 1

  • @garyhuntress6871
    @garyhuntress6871 2 роки тому +1

    my patreon halted because my cc expired. I'm going to fix that today!

  • @sajjadali-taeminsteppedony8434
    @sajjadali-taeminsteppedony8434 2 роки тому

    Equation zaddy is back 😶

  • @vishalmishra3046
    @vishalmishra3046 Рік тому +1

    *First Technique is not Generalizable*
    The first technique ONLY works when you predict the correct factors of the constant term. What if it is not an integer in the equation. What if its factors are not integers (e.g. 15 = 9 x 5/3). If the constant term has many factors (large N), then you will discover these issues after a very large number of attempts (Number of pairs of factors = N x (N-1) / 2 attempts). And then the same number of attempts with negative factors (e.g. 15 = -3 x -5). That's a lot of factor-pairs attempted just to eventually find that this technique will not work.

    • @MyOneFiftiethOfADollar
      @MyOneFiftiethOfADollar Рік тому

      Excellent point which detracts from the viability of the technique, especially for large constant terms.

  • @afuyeas9914
    @afuyeas9914 2 роки тому

    The chad answer: Ferrari's method every single time

  • @charlesbromberick4247
    @charlesbromberick4247 2 роки тому

    Mr. Burp is an absolute whiz!

  • @user-et1up1nk9k
    @user-et1up1nk9k 2 роки тому +1

    🙂

  • @VardiIntegral
    @VardiIntegral Рік тому

    Is it true: The method which is applicable to factor a 4 degree polynomial is depend upon the way i represent it to the world.🎉🎉

  • @muhammedrehaan5750
    @muhammedrehaan5750 Рік тому

    Thank u sir but my brain popped😅

  • @mantasr
    @mantasr 4 місяці тому

    Double-cross method?
    Treacherous.

  • @CAFoundationExam
    @CAFoundationExam 2 роки тому

    Hi

  • @glinzaglinza7917
    @glinzaglinza7917 2 роки тому

    Please do some lebesgue integrals

  • @lucasmontec
    @lucasmontec Рік тому

    The cross method gives you a right result... This means that the double-cross method actually screws you up? (Haha)

  • @youssefbenmMorocco
    @youssefbenmMorocco 2 роки тому +1

    From Morocco 🇲🇦🇲🇦🇲🇦
    I fellow you just to understand how est stupids were somes of my math's teachers🤣🤣🤣
    Did u come to morocco?!

  • @mahhar31
    @mahhar31 2 роки тому +133

    I am from India

  • @killing_gaming0973
    @killing_gaming0973 2 роки тому

    I will also say hi can cheer you up too

  • @Happy_Abe
    @Happy_Abe 2 роки тому +2

    How’d we know the first one wasn’t a product of cubic and linear instead of two quadratics

    • @ultimatedude5686
      @ultimatedude5686 2 роки тому +1

      Any cubic can be factored as a linear term and a quadratic term. If you have a linear term times a cubic, you can convert that to two linear terms times a quadratic. If you multiply the linear terms you get the original polynomial factored in terms of two quadratics.
      Therefore, all quartics can be factored as two quadratics.

    • @Happy_Abe
      @Happy_Abe 2 роки тому +1

      @@ultimatedude5686 that’s true yeah thanks!
      This is because all cubics have at least one real solution
      I forgot about that

  • @noobplayer5461
    @noobplayer5461 2 роки тому

    These are olympiad question!!!!😂

  • @Dylan-oq8xb
    @Dylan-oq8xb 2 роки тому

    I think basic factor theorem would be a lot more straight forward 😂

    • @blackpenredpen
      @blackpenredpen  2 роки тому +2

      What’s basic factor theorem?

    • @j.u.4.n620
      @j.u.4.n620 2 роки тому

      😂

    • @owlsmath
      @owlsmath 2 роки тому +1

      I think this is just guess and check for zeroes right? Then you can reduce the degree of the polynomial.

    • @Dylan-oq8xb
      @Dylan-oq8xb 2 роки тому +1

      @@owlsmath yeh I just couldn’t be bothered to explain it 😂

    • @owlsmath
      @owlsmath 2 роки тому

      @@Dylan-oq8xb I googled factor theorem and then it all made sense 😃

  • @駱丹青
    @駱丹青 2 роки тому +1

    中文亂入,看無,看無。
    前三名有錢?真是不好。賽馬?
    鼓勵童學參加挑戰,因資金有限只能提供前三車馬費,會不會比較好。
    另,比的是解題速度?解題邏輯與方法無法評斷?舉個不可能例子,如果有學生把簡單題寫成像愛因斯坦般申論題如何辦,一張紙不夠寫?

    • @blackpenredpen
      @blackpenredpen  2 роки тому

      歡迎一起來贊助喔 這樣你要怎樣分配都可以

  • @nuctang
    @nuctang 2 роки тому

    How about x^100+1? Lol.

  • @broytingaravsol
    @broytingaravsol 2 роки тому +1

    有名次有錢拿哦

  • @olli3686
    @olli3686 Рік тому

    "because i made this" LOL

  • @RegisteredLate123
    @RegisteredLate123 Рік тому

    ooorrrrr just try and guess one solution then long divide?

  • @wrestling_is_fake
    @wrestling_is_fake 2 роки тому

    Request: how are trigonometric values of angles beyond 90° found?

  • @amtep
    @amtep Рік тому

    Missed chance to use fibonacci numbers for the prize money :)