Prove that 7^n - 6n -1 is divisible by 36 for any natural number, n. [Mathematical Induction]

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 18

  • @jensberling2341
    @jensberling2341 11 місяців тому +1

    The love able and lovely performance, and the subtle and clear persuasion of this math. Induction is breathtaking. Yes, breathtaking for me who has struggled to understand it. Thank you, Doctor

  • @ayaanmuslimcareafrica6623
    @ayaanmuslimcareafrica6623 Рік тому +6

    the best way ever to understand Mathematical induction

  • @giuliofalco9816
    @giuliofalco9816 2 місяці тому

    Using congruence i proved in this way: 36 = 2^2 3^2 so I apply chinese theorem of remainder writing the following congruence systems: 7^n - 6n - 1 = 0 mod 2; and 7^n - 6n - 1 = 0 mod 3. Substitute 7 with and 6 with the remainder of nteger division by 2 and 3 and the equivalence follow.

  • @bhaveerathod2373
    @bhaveerathod2373 Рік тому

    YOU ARE GENIUS MAN! THANK YOU, this has helped so much !

  • @EzraSchroeder
    @EzraSchroeder 3 місяці тому

    this one is straight out of an advanced calculus book haha! it is a problem in chapter one of Kenneth A. Ross: Analysis the Theory of Calculus -- love it!

  • @benjaminvatovez8823
    @benjaminvatovez8823 2 місяці тому

    Thank you very much for your video. I would have suggested to use the binomial theorem:
    7^n=(6+1)^n=1+6n+36(sum with k from 2 to n) C^k_n 6^(k-2)

  • @lush1523
    @lush1523 4 місяці тому +1

    Am gonna be here till I finish my degree, I have a discrete mathematics course this semester

  • @KamalAzhar-t7q
    @KamalAzhar-t7q 2 місяці тому

    To prove such property :> (where f is a given fonction and p is a fixed integer) one generally can use induction. But the following is much harder

  • @bhaveerathod2373
    @bhaveerathod2373 Рік тому

    Best teacher

  • @robertveith6383
    @robertveith6383 4 місяці тому +3

    Or, look at
    (6 + 1)^n - 6n - 1 =
    6^n + n*6^(n - 1)*1^1 + [n(n - 1)/2]*6^(n - 2)*1^2 + ... + [n(n - 2)/2]*6^2*1^(n - 2) + n*6^1*1^(n - 1) +
    1^n - 6n - 1 =
    6^n + n*6^(n - 1) + ... + [n(n - 2)/2]*36 + 6n + 1 - 6n - 1 =
    6^n + n*6^(n - 1) + ... + [n(n - 2)/2]*36
    That is divisible by 36.

  • @gurdiprooprai6453
    @gurdiprooprai6453 2 місяці тому

    Excellent work, but the most difficult part of this video is what determines whether or not you cross your "7's" or not. I am still working on it lol.

  • @ruthgonzalez6547
    @ruthgonzalez6547 2 місяці тому

    Nice!

  • @sumeetmahapatra9862
    @sumeetmahapatra9862 10 місяців тому

    Thank you sir

  • @BP-gn2cl
    @BP-gn2cl 2 місяці тому

    Write 7^n =(6+1) ^n, apply bionomial expansion and in fourth line you can prove the required thing

  • @arthurkassis
    @arthurkassis 7 днів тому

    Take the first possibility:
    n=1, 7-6-1=0, which is divisible by 36
    then, assume that it's true for n=k, (k belongs to naturals)
    7ˆk-6k-1=36m, (m belongs to naturals)
    now, let's see if it also works when n=k+1
    7ˆ(k+1)-6(k+1)-1
    =7.7ˆk-6k-6-1
    =7.7ˆk-6k-7
    =7(7ˆk-1)-6k
    =7(36m+6k)-6k
    =7.36.m+42k-6k
    =7.36m+36k, which is divisible by 36 as both terms are multiples of it.

  • @zazavitch1
    @zazavitch1 Рік тому +1

  • @aayushixi
    @aayushixi 5 місяців тому

    omg tysmmmm

  • @abdussamadabubakar1746
    @abdussamadabubakar1746 Рік тому

    Damn!!!!!