2^n is greater than n^2. Strategy for Proving Inequalities. [Mathematical Induction]

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 65

  • @idellius7505
    @idellius7505 2 місяці тому +3

    I have been struggling with this proof for a while, and every explanation I've found about it just didn't click for me. You put this together in a way that no other UA-cam lecturer could. Thank you for saving my sanity brother!

  • @anikethkopalle82
    @anikethkopalle82 Рік тому +18

    probably the best explanation on youtube. great stuff! thanks!

  • @madonnacesso40
    @madonnacesso40 11 місяців тому +4

    I love your videos man! From Italy 🇮🇹, never stop learning

  • @NicaKasende
    @NicaKasende Місяць тому +5

    I'm here coz i went to the math sorcerer and he completely confused me😂😭

  • @davide816
    @davide816 Рік тому +3

    thank you very much you definitly need more views

  • @robertveith6383
    @robertveith6383 4 місяці тому

    *Everyone,* here is a modified approach:
    The base case is for n = 5.
    2^5 vs. 5^2
    32 > 25
    So, the base case is satisfied.
    The inductive step. Assume it is true for n = k, for k >= 5:
    That is, assume 2^k > k^2.
    Then, show it is true for n = k + 1.
    That is, show 2^(k + 1) > (k + 1)^2.
    Take the inequality in what we are assuming and multiply each side by 2
    so that it resembles closer to the inequality that we want to show:
    Assume: 2^k > k^2
    2*2^k >2*k^2
    2^(k + 1) > 2k^2
    We ultimately need to show 2^(k + 1) is greater than (k + 1)^2 for k >= 5.
    If we can show that 2k^2 is greater than (k + 1)^2, then we can use the
    transitive property to finish this.
    2k^2 vs. (k + 1)^2
    2k^2 vs. k^2 + 2k + 1
    2k^2 - k^2 - 2k vs. 1
    k^2 - 2k vs. 1
    k^2 - 2k + 1 vs. 1 + 1
    (k - 1)^2 vs. 2
    By inspection, you can see that for k >= 3, the left-hand side is greater than 2.
    So, 2^(k + 1) > 2k^2 > (k + 1)^2.
    By transitivity, 2^(k + 1) > (k + 1)^2.
    Thus, by the Principle of Mathematical Induction, I have shown that
    2^n > n^2 for all integers n greater than or equal to 5.

  • @ANIMEPLANET-t4n
    @ANIMEPLANET-t4n 2 місяці тому +1

    thank you for making this video. It was really useful for me.

  • @shortscouture1
    @shortscouture1 Рік тому +3

    absolute legend saving me from cs

  • @m37155ar0cha
    @m37155ar0cha Рік тому +3

    😂 love the Einstein insert!!

  • @franzsenkelo6246
    @franzsenkelo6246 9 місяців тому +1

    Perfect

  • @EzraSchroeder
    @EzraSchroeder 3 місяці тому

    this one is straight out of an advanced calculus book haha! it is a problem in chapter one of Kenneth A. Ross: Analysis the Theory of Calculus -- love it!

  • @Loots1
    @Loots1 Рік тому +1

    took me a bit to not be confused but i get it, amazing

  • @akashthakur1692
    @akashthakur1692 Рік тому +2

    Great ❤️
    Love from india

    • @iCheerycherry
      @iCheerycherry 6 місяців тому

      Mujhe bhi batana please last step smjh nahin aaya 😢

  • @bhuvan17175
    @bhuvan17175 4 місяці тому

    love from india nice explanation

  • @shuaibjemil
    @shuaibjemil Рік тому +4

    Thanks sir.Waiting for maths induction for questions in Matrix form

    • @PrimeNewtons
      @PrimeNewtons  Рік тому

      You should share an example. It helps. That would be Linear Algebra

    • @shuaibjemil
      @shuaibjemil Рік тому

      @@PrimeNewtons ok sir

  • @No.School.dk_Colur
    @No.School.dk_Colur 11 місяців тому

    That little tmr song/ intro was so sweet

  • @jumpman8282
    @jumpman8282 10 місяців тому

    That was a neat solution. Thank you!

  • @abioolayoyledegil8698
    @abioolayoyledegil8698 11 місяців тому +3

    Thank you for this very informative video!Im freshman in college and we had induction topic 3-4 weeks ago and i remember doing this exercise or similar to this one in class. My question is instead of step by step making it smaller in 6:51 can we just say 2k+1 is less than k² because k is starting from 5? Does that work too?

    • @kylebdvl
      @kylebdvl 11 місяців тому +1

      You can actually do that what i did :
      >k^2 + k^2 | Take out k^2 = k x k
      > k^2 + k *k | k*k = 5k because K>=5
      > k^2 + 5k | split into 2k + 3k
      >k^2 + 2k + 3k | 3k>1
      > k^2 + 2k + 1

    • @kylebdvl
      @kylebdvl 11 місяців тому +1

      so technically you're not wrong actually

  • @dawitabebe
    @dawitabebe 3 дні тому

    00:59 👌

  • @austinwhite2415
    @austinwhite2415 7 місяців тому +2

    thank you

  • @shmuelzehavi4940
    @shmuelzehavi4940 3 місяці тому +1

    Very nice approach end explanation.
    I'll present another approach, for the proof that:
    [∃ m ∈ N , m > 4 , 2^m > m^2] ⟹ [n = m + 1 ⟹ 2^n > n^2]
    Proof:
    2^m > m^2 ⟹ 2^m - m^2 > 0
    Therefore, for n = m + 1 we obtain:
    2^n - n^2 = 2^(m+1) - (m+1)^2
    = 2⋅2^m - m^2 - 2m - 1
    = 2(2^m - m^2) + (m-1)^2 - 2
    > (m-1)^2 - 2 > (4-1)^2 - 2
    = 7
    > 0
    Therefore: 2^n > n^2 ∎

  • @dengankunghacharles1115
    @dengankunghacharles1115 2 місяці тому

    Many thanks sir

  • @rooseveltpantaleonvara9489
    @rooseveltpantaleonvara9489 Рік тому

    Thank you, this was a great explanation I finally got it.

  • @EzraSchroeder
    @EzraSchroeder 3 місяці тому +1

    where'd you get your hat? i might need one...

  • @tgx3529
    @tgx3529 2 місяці тому

    I had also some idea. 2^n-n^2>0, (2^n/2-n)(2^n/2+n)>0, So this Proof Is ekvivalent with the Proof 2^n/2>n by induction...
    sqrt2*2^n/2>n+1 for n+1, sqrt2=(1+ something Positive). Sometimes I like combinations Proofs.

  • @vpikosh
    @vpikosh 3 місяці тому

    Great content man, thank you so much for the explanation. Now would the proof change if instead of strictly greater than we had a greater or equl than? Like 2^n >= n^2

  • @KingIndra-r2h
    @KingIndra-r2h Місяць тому

    does it also work if i turn it into 2^k + 2^(k+1)>(k+1)^2?

  • @Frans-ds6ei
    @Frans-ds6ei 8 місяців тому

    🎉🎉 thank you!!

  • @HowlingDeath
    @HowlingDeath 10 місяців тому +1

    k^2> 2k+1
    What I don't get is how can put least value of k=4 in above eq?

  • @The-Collector-g7q
    @The-Collector-g7q Рік тому +27

    I still don't understand 😭

    • @JosephineSianjase
      @JosephineSianjase Рік тому

      Sir please improve on your board I can't see

    • @No.School.dk_Colur
      @No.School.dk_Colur 11 місяців тому +1

      U need to ask yourself what you don’t get: is it the principle of induction? The principle of calculating the inequality or maybe something simpler like the calculation rules ( I know you probably didn’t need this but once u break down what u undertaken and what u don’t it becomes much easier for you to help itself understand)

    • @robertveith6383
      @robertveith6383 4 місяці тому

      ​@@No.School.dk_Colur-- This is not partial texting. Spell out all of your words.

  • @dnaingnaing4345
    @dnaingnaing4345 Рік тому +2

    May I ask that if it doesn't work for k =5,Can I work out to prove k=6and if k=6works out does that mean P(n)is true for k greater than 4.

    • @dnaingnaing4345
      @dnaingnaing4345 Рік тому

      Please answer me.I feel so frustrating with inequalities induction.
      There are so many ways and I am dizzy now.

    • @dnaingnaing4345
      @dnaingnaing4345 Рік тому +1

      Why do u choose 4k which is not 5k?
      Why do u want to reduce?

    • @dnaingnaing4345
      @dnaingnaing4345 Рік тому

      Explain me please.

    • @dnaingnaing4345
      @dnaingnaing4345 Рік тому

      Is it normal to reduce and can I reduce almost every inequalities like that, sir?

    • @dnaingnaing4345
      @dnaingnaing4345 Рік тому

      Sir, will itbe wrong if I try to calculate
      =k square plus 5k
      =k square plus 2k plus 3k
      =ksquare plus 2k plus 1

  • @yasir6347
    @yasir6347 11 місяців тому

    Discrete math is a different beast 😅

  • @syl5217
    @syl5217 Рік тому +2

    Good work. But not clear to me.

  • @panjak323
    @panjak323 2 місяці тому

    Hmm why not use
    n > 2log2(n)

  • @akihayakawa788
    @akihayakawa788 11 місяців тому

    WAITT I GET IT NOW LOL TYSM

  • @giggablob4377
    @giggablob4377 7 місяців тому +1

    i will never understand induction with inequalities cus i can wrap my brain around the fact, that i can js change the value like that 😭

    • @jordanchew9552
      @jordanchew9552 7 місяців тому +1

      Well basically that's the point. In mathematical induction for inequalities, as long it doesn't disrupt the thing which in this case, the greater than sign, you can basically make up ur own variables as long it makes the statement true. But not every variables, it only works when u try to proof it. By which in this example the 4k, because we know that k>4 which is essentially k=5, so sub it into the k^2, we get 25 right, then why it's 4k, because if we sub it into the 4(20), it's correct right 25>20 so there u go

    • @jordanchew9552
      @jordanchew9552 7 місяців тому +1

      U could say that it's 3k, just that remember to fact it out that it will become 2k + k for the next step, I don't think it works for 2k, it might work but there's gonna some explanation involved as well so just follow the variables from the (k+1)^2 expanded version

  • @PillsStore-ed4es
    @PillsStore-ed4es 19 днів тому

    My prob is how do you know k²

  • @Ruth-be9pm
    @Ruth-be9pm Рік тому

    Make a video specifically for me because I still don't get it 😢

  • @TwiBible-b4i
    @TwiBible-b4i 5 місяців тому

    still do not understand...good work though🙂

  • @anhdanh7969
    @anhdanh7969 Рік тому

    Toan gi bo ich

  • @natureswindow
    @natureswindow 2 місяці тому

    this reminds me of curry (not racially motivated)

  • @Kojoakomeaopare
    @Kojoakomeaopare 11 місяців тому

    I don't understand your teaching