Sum of first n squares. [Mathematical Induction]

Поділитися
Вставка
  • Опубліковано 14 січ 2025

КОМЕНТАРІ • 14

  • @Plable
    @Plable 2 роки тому +4

    Brilliant, as always! Thank you so much 👍
    Greetings from Spain 🇪🇸

  • @robertgibson964
    @robertgibson964 Місяць тому

    thank you for making math more understandable to me!

  • @robertgibson964
    @robertgibson964 2 місяці тому

    awesome! thanks so much for teaching me

  • @surendrakverma555
    @surendrakverma555 6 місяців тому

    Thanks Sir 👍

  • @OkpagaChukwugozimkingdav-fl8ew
    @OkpagaChukwugozimkingdav-fl8ew 11 місяців тому

    Sir, solve inequality

  • @EE-Spectrum
    @EE-Spectrum Рік тому +1

    Thanks for this very good explanation. However, I think I saw a proof done by using the method of differences. It would be good to compare and contrast which method is better. Keep up the great work you are doing 👍.

    • @PrimeNewtons
      @PrimeNewtons  Рік тому

      I must confess I don't know what the method of differences is. Please share a link to it.

    • @EE-Spectrum
      @EE-Spectrum Рік тому +1

      @@PrimeNewtons ua-cam.com/video/aI0M4XRiz4Ih/v-deo.htmlttps://ua-cam.com/video/aI0M4XRiz4Ih/v-deo.htmlttps://ua-cam.com/video/aI0M4XRiz4I/v-deo.html
      This is one link. There are more. I will look for them.

    • @EE-Spectrum
      @EE-Spectrum Рік тому

      @@PrimeNewtons ua-cam.com/video/OpA7oNmHobM/v-deo.html

    • @PrimeNewtons
      @PrimeNewtons  Рік тому

      Oh I see. This is not mathematical Induction. It is deriving the formula itself. Mathematical Induction is what you use to prove that the formula is always correct.

    • @EE-Spectrum
      @EE-Spectrum Рік тому +1

      @@PrimeNewtons ua-cam.com/video/Xj2ndT-AoMw/v-deo.html
      These are enough to give you an understanding of the difference method.

  • @davidbrisbane7206
    @davidbrisbane7206 3 місяці тому

    If you compute the sum from r = 1 to n of
    Σ(r + 1)³ - Σr³ in two different ways, you can deduce the formula for Σr².
    Hint 1: Σ (r + 1)³ - Σr³ = Σ3r² + Σ3r + Σ1
    Note: Σ1 = n and Σr = n(n + 1)/2.
    Hint 2: Σ(r + 1)³ - Σr³ =
    (n + 1)³ - 1³