integration at its finest

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 10

  • @kriegsmesser4567
    @kriegsmesser4567 6 днів тому

    I solved it using the same symmetrization trick too. I remembered that the same thing is used for example when calculating the definite integral (from 0 to pi/2) of sqrt(tan(x)). There, you can add sqrt(cot(x)), as it is symmetric along x=pi/4, and it makes the rest much easier than if you were to try and compute the indefinite integral.

    • @JPiMaths
      @JPiMaths  5 днів тому

      @@kriegsmesser4567 yep it's a cool trick right? I've seen a fair few integrals like this!

  • @Samuel-zs9gw
    @Samuel-zs9gw 11 днів тому +4

    Have my interviews in 2 days, your videos are very helpful! Thank you!

    • @Toxophilix
      @Toxophilix 9 днів тому

      Good luck!

    • @JPiMaths
      @JPiMaths  7 днів тому

      @Samuel-zs9gw ah just seen this, sorry! How were the interviews??

  • @Roman_CK
    @Roman_CK 11 днів тому

    4:21 likes, u wellcome

  • @7ymke
    @7ymke 11 днів тому +1

    Cool

  • @loickbf1225
    @loickbf1225 7 днів тому

    cool trick but relying on "a well known result" sounds kinda odd to me. Even more when this result is so technical to prove rigoursouly. Great trick nonetheless

    • @JPiMaths
      @JPiMaths  7 днів тому

      @loickbf1225 ah yeah, there are lots of videos explaining this result (including one of my first ever uploads!) so I thought it wouldn't be worth deriving in this video.