Quadratic Factoring Using the X Method

Поділитися
Вставка
  • Опубліковано 30 січ 2025

КОМЕНТАРІ • 40

  • @helpwithmathing
    @helpwithmathing  Рік тому +4

    Hi everyone!! Here's the link to the Factoring By Grouping video I mention in the middle of this video: ua-cam.com/video/J_-P5OqobV0/v-deo.html

  • @drisslahlou2726
    @drisslahlou2726 4 місяці тому +1

    Thanks prof❤

  • @bravikumar8950
    @bravikumar8950 5 місяців тому

    Good explanation.
    👍👍👍👍

  • @SuperPkd
    @SuperPkd 10 місяців тому +1

    Excellent

    • @helpwithmathing
      @helpwithmathing  10 місяців тому +1

      @Superpkd so glad you found it helpful!

  • @vespa2860
    @vespa2860 10 місяців тому +1

    I am working my way through your videos(very slowly!).
    Do you have one on how to check if the quadratic is factorable at all?

    • @helpwithmathing
      @helpwithmathing  10 місяців тому +2

      Thanks for watching, and excellent question!! I don't have one yet, but check back at the end of the day, and I'll have one posted!!

    • @helpwithmathing
      @helpwithmathing  10 місяців тому +2

      @vespa2860 Here you go!! "Is My Quadratic Factorable?"
      ua-cam.com/video/lrR9NZnwFZE/v-deo.html

  • @valentinleguizamon9957
    @valentinleguizamon9957 11 місяців тому +1

    this was great, thank you!!!

    • @helpwithmathing
      @helpwithmathing  11 місяців тому

      I'm thrilled you found it helpful! Thanks for letting me know.

    • @valentinleguizamon9957
      @valentinleguizamon9957 11 місяців тому

      @@helpwithmathing Yes!! This way of solving is great, and your teaching skills are on point!!! 😊😊 Thank you so much!!

    • @helpwithmathing
      @helpwithmathing  11 місяців тому +1

      If you enjoyed that one, I think you'll get a kick out of this way of factoring quadratics when the numbers don't work out in the X method: ua-cam.com/video/IwzTkeD4x78/v-deo.html

  • @Drummyist
    @Drummyist 11 місяців тому +1

    Al fin lo entendí, ¡Gracias!

  • @EdwardJones-i1z
    @EdwardJones-i1z 8 місяців тому

    Thank you. I need more examples.

    • @helpwithmathing
      @helpwithmathing  8 місяців тому

      So glad to be helpful. Take a look at my factoring play list: there are several different videos to give you more practice with this. :)

  • @helpwithmathing
    @helpwithmathing  Рік тому

    Ready for more? Check out factoring using the x method, even when the squared coefficient is greater than 1! ua-cam.com/video/r8JJ50wdCJA/v-deo.html

  • @alfredbienvenuamouzou-houe6167

  • @wes9627
    @wes9627 10 місяців тому +2

    I don't know why anyone would need to factor a quadratic equation, but if the exam said factor it, then why memorize the X method when everyone should know the quadratic solution formula for solving ax^2+bx+c=0; x=[-b±√(b^2-4ac)]/2a? The X method is just a modified version of this formula. To illustrate let (2x/3-4/5)(5x/7+2/3)=(10/21)x^2-(8/63)x-8/15=0. The quadratic formula gives x=6/5 and x=-14/15. Thus, (x-6/5)(x+14/15)=0, and this expression may be multiplied by anything without changing it. The coefficient of x^2 is 10/21 and how may it be factored? (2*5)/(3*7). How about (2/3)(5/7)?
    [(2/3)(x-6/5)][(5/7)(x+14/15)]=(2x/3-4/5)(5x/7+2/3)=0 gives back the original factored form. This was a very complex example, so let's try a simpler one.
    (2x-3)(5x+4)=10x^2-7x-12=0. The quadratic formula gives roots x=3/2 and x=-4/5. Thus (x-3/2)(x+4/5)=0. Factor the leading coefficient 10 into 2*5 and distribute this as (2*5)(x-3/2)(x+4/5)=[2(x-3/2)][5(x+4/5)]=(2x-3)(5x+4)=0, which matches the original factored form. Compare this method with the X method to see the similarities.

    • @helpwithmathing
      @helpwithmathing  10 місяців тому +1

      @roger7341
      Thanks for the great response. You are absolutely correct that there are many many ways to factor quadratics (and many reasons to: to find the zeros of your parabola to help with manual graphing, to simplify the numerator and denominator of rational functions to help identify zeros, holes, and vertical asymptotes, or simply because you are an Algebra I student and your teacher wants to build your brain by asking you to play with factoring equations in many manners without the use of a graphing calculator. But in terms of the essential similarities of all methods, check out this video that derives the Quadratic Formula by Completing the Square on the Standard form of a Parabola. ua-cam.com/video/b45jSYIooVE/v-deo.html

  • @quandarkumtanglehairs4743
    @quandarkumtanglehairs4743 8 місяців тому

    I dig this method.

    • @helpwithmathing
      @helpwithmathing  8 місяців тому +1

      @quandarkumtanglehairs4743 Terrific! Thanks for watching and glad it was helpful!

    • @quandarkumtanglehairs4743
      @quandarkumtanglehairs4743 8 місяців тому

      @@helpwithmathing Yep! It's another method to add to the toolbox. I'm always on the lookout for calculation methods on the same concept, and also different expressions of the same relation. So this 'X' method of validating quadratic roots (to complement the columnar approach) is a good advantage in encapsulating the products, addends, subtrahends, and minuends in a nice, neat little graphic.
      It's really neat, I like it a lot. ^-^

    • @helpwithmathing
      @helpwithmathing  8 місяців тому

      Fantastic

  • @angelsmileyprettyprincess
    @angelsmileyprettyprincess 4 місяці тому

    Why not( -12x ) +2x? i.e-12x+2x

    • @helpwithmathing
      @helpwithmathing  4 місяці тому

      @angelsmileyprettyprincesss. Thanks so much for asking!! Not only to we need them to add to -10, but we also need them to multiply to positive 24. (-12) x (2) will be -24. So that pairing won't work, leaving us with (-4) x(-6) which both adds to (--10) and multiplies to positive 24. Does that clear that up? If not, ask more questions.

  • @barneyDcaller
    @barneyDcaller 3 місяці тому

    There is another method on factoring with leading coefficient. Multiply the leading coefficient of x² to the constant. Do the usual factoring, then divide each constants with the leading coefficient of x². If one constant equals the whole number, retain the quotient as a factor. If the other constant is not divisible with the leading coefficient, copy that leading coefficient to x.
    Ex: 2x²+11x-6
    Multiply 2 to -6, x²+11x-12
    Factor out: (x-1)(x+12)
    Divide all constant by leading coefficient 2 from the original equation: (x-1/2)(x+12/2)
    Simplify: (x-1/2)(x+6)... Carry over the /2 from x-1/2 and transfer the 2 to x
    Answer: (2x-1)(x+6)

    • @helpwithmathing
      @helpwithmathing  3 місяці тому

      @barneyDcaller. This method is really intriguing, and seems to work as long as the leading coefficient is a prime number; I'm wonder how it works when the leading coefficient has multiple factors, such as 6x^2 - 7x - 5. You multiply the 6 times the -5 to get -30, factor to get (x-10)(x+3). Divide each constant by 6 and neither is an integer, nor is the answer (6x-10)(6x+3). How do you adjust this method to still work when the leading co-efficient itself has multiple factors?

  • @ngocdo5687
    @ngocdo5687 2 місяці тому +1

    XX - 10X + 24
    * 24 = 2 x 12 = 3 x 8 = 4 x 6 .
    12 - 2 = 10 = (b)
    ** 12 x 12 - 10 x 12 + 24
    144 - 120 + 24 # 0
    ** 2 x 2 - 10 x 2 + 24
    4 - 20 + 24 # 0
    (-2) x (-2) - 10 x (-2) + 24
    4 + 20 + 24 # 0
    ** 6 + 4 = 10 = (b)
    6 x 6 - 10 x 6 + 24
    36 - 60 + 26 = 0
    4 x 4 - 10 x 4 + 24
    16 - 40 + 24 = 0
    *** X' = 6 , X" = 4 ./.

    • @ngocdo5687
      @ngocdo5687 2 місяці тому

      * XX - 3 X - 18
      18 = 2 x 9 = 3 x 6
      6 - 3 = 3 = ( b)
      6 x 6 - 3 x 6 - 18
      * 36 - 18 - 18 = 0
      (-3)x(-3) - 3 x(-3) - 18
      * 9 + 9 - 18 = 0
      X' = 6 , X" = -3./.

    • @helpwithmathing
      @helpwithmathing  2 місяці тому

      Thank you so much for these demonstrations!

    • @helpwithmathing
      @helpwithmathing  2 місяці тому

      Thank you so much for these demonstrations!

    • @helpwithmathing
      @helpwithmathing  2 місяці тому

      Thank you so much for these demonstrations!

  • @ngocdo5687
    @ngocdo5687 2 місяці тому

    2XX + 11X - 6
    XX + 5,5X - 3
    * 3 = 0,5x6 = 1x3 = 1,5x2
    6 - 0,5 = 5,5 = b'
    ** 6 : 2x6x6 + 11x6 - 6
    72 + 66 - 6 # 0
    -6 : 2(-6x-6) +11(-6) -6
    72 - 66 - 6 = 0
    ** 0,5 : 2(0,5x0,5) + 11(0,5) - 6
    0,5 + 5,5 - 6 = 0
    *** X' = 6 , X" = 0,5 ./.

    • @helpwithmathing
      @helpwithmathing  2 місяці тому

      Thank you so much for these demonstrations!

  • @brandonlillo9849
    @brandonlillo9849 7 місяців тому

    Mathematics 10C!

    • @helpwithmathing
      @helpwithmathing  6 місяців тому

      @brandonlillo9849 Thanks for watching and boosting!