You can use the X Method to Factor Quadratics whether or not the squared term has a coefficient!

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 27

  • @naderhumood
    @naderhumood 7 місяців тому +1

    Thank you v much Mum .... you' great professor.

    • @helpwithmathing
      @helpwithmathing  7 місяців тому +2

      @naderhumood1199. Oh I'm so glad it helped!!

  • @chrishelbling3879
    @chrishelbling3879 10 місяців тому +2

    Me again, dumb question. If the "a" coefficient has more than 2 factors (such as, 4x^2), how would you know if the factorization should be (4x + ___) (x + ___), or (2x + ___) (2x + ___) ? Thanks.

    • @helpwithmathing
      @helpwithmathing  10 місяців тому +1

      @chrishelbling3879 There are no dumb questions!! The brilliance of this method is it takes care of that for you in the execution. No more trial and error. Just factor the biggest thing out of both terms when you get to the factor by grouping portion and it will always work out. Take a peek at this earlier video I made that shows an example with 4x^2 as its leading term (forgive the camera going out of focus a bit: I learned as I went along). If you don't want to watch the whole video you can jump to 6min in for this example. Happy watching!
      ua-cam.com/video/r8JJ50wdCJA/v-deo.html

    • @chrishelbling3879
      @chrishelbling3879 10 місяців тому +1

      @@helpwithmathing trust me, there are dumb questions. :D

    • @Astrobrant2
      @Astrobrant2 8 місяців тому

      That's the beauty (and power) of this method. In the beginning you multiply a and c. That means you have already dealt with the x^2 coefficient and all its factors. Believe it or not! No more hassling with multiple possibilities where the x^2 coefficient is concerned.
      By splitting the x term into two parts, you can convert the trinomial into two polynomials. Here's an example:
      6x^2 - 5x - 4
      First multiply a times c =-24
      Then figure what combination of factors of 24 will add or subtract to -5. Those will be 3 and -8.
      Now convert the -5x into -8x and +3x to make:
      6x^2 +3x -8x -4
      Group into two polynomials: (6x^2 + 3x) + (-8x -4)
      Factor these. The GCF for the first polynomial is 3x. The GCF for the second polynomial is -4. So factored, you get 3x(2x + 1) - 4(2x+1)
      So far, everything is the same as in the video.
      Now you factor out the GCF of these two polynomials. That's 2x+1. (Or just use the distributive property.)
      That gives (2x+1)(3x-4)
      Now what? HEY! You're done!!

    • @helpwithmathing
      @helpwithmathing  8 місяців тому

      @@Astrobrant2 Well said!

    • @afrika-karibianaestudionan4050
      @afrika-karibianaestudionan4050 20 днів тому

      ​@@Astrobrant2
      f(x) = 6x² - 5x - 4 ⇔
      f(x) = ([6x]² - 5[6x] - 24)⅙ ⇔
      f(x) = ([6x + 3][6x - 8])(⅓•½) ⇔
      f(x) = (2x + 1)(3x - 4)

  • @SuperPkd
    @SuperPkd 6 місяців тому

    Excellent

  • @MathsSirg
    @MathsSirg 6 місяців тому

    ✌️❣️

  • @SuperJemser
    @SuperJemser 10 місяців тому

    2 errors in the commentating, you said 12 x squared, (5 30 in)and at the end, you said X - 4 (6 16)

    • @helpwithmathing
      @helpwithmathing  10 місяців тому

      Thanks for alerting me to the two mis-speaks!! So glad what I wrote on the whiteboard is correct. I’ll see if I can go into the UA-cam editor and fix those or use subtitles to note the things I said incorrectly but wrote correctly!

    • @helpwithmathing
      @helpwithmathing  10 місяців тому

      @SuperJemser OK! Used Subtitles to put in the corrections. Thanks for the keen ear and sorry for the mis-speak.

  • @ngocdo5687
    @ngocdo5687 2 місяці тому

    * XX - 6X - 16
    16 = 2 x 8 = 4 x 4
    8 - 2 = 6 = ( b)
    * 8 X 8 - 6 x 8 - 16
    64 - 48 - 16 = 0.
    * 2 x 2 -6 x 2 - 16 # 0
    (-2)(-2) - 6(-2) - 16
    4 + 12 - 16 = 0
    X' = 8 , X" = - 2 .

    • @helpwithmathing
      @helpwithmathing  2 місяці тому

      Thank you so much for these demonstrations!

  • @chrishelbling3879
    @chrishelbling3879 10 місяців тому

    Pardon my comment, but it strikes me you call this the "X method," yet the variable is also an "x," do your students ever get confused by this nomenclature? Perhaps you might consider a goofier name for the process, like the Criss-cross method, or the Burried Treasure method, or whatever? But hey, if your students follow with you OK, then good job.

    • @helpwithmathing
      @helpwithmathing  10 місяців тому

      you know, some people call it the AC method, but that sounds so clinical to me. The X Method sounds exciting to me, but I take your point about x also being the name of the variable. I like the Criss-cross Method, maybe I'll adopt that. Thanks for the musings!

  • @panlomito
    @panlomito 2 місяці тому

    3x² + 11x- 4 = 0 -> x² + 11x -4.3 = 0 or x² + 11x -12 = 0 12 = 12x1 and 12-1 =11 so (x+12) . (x-1) = 0
    dividing the answer with 3 x = - 12/3 = -4 or x = 1/3

    • @helpwithmathing
      @helpwithmathing  2 місяці тому

      Absolutely. Check this out, and see if I am teaching the same method you are here: ua-cam.com/video/XFxyiJjeCvg/v-deo.html

    • @afrika-karibianaestudionan4050
      @afrika-karibianaestudionan4050 18 днів тому

      f(x) = 6x² - 5x - 4 ⇔
      f(x) = ([6x]² - 5[6x] - 24)⅙ ⇔
      f(x) = ([6x + 3][6x - 8])(⅓•½) ⇔
      f(x) = (2x + 1)(3x - 4)

    • @afrika-karibianaestudionan4050
      @afrika-karibianaestudionan4050 18 днів тому

      3x² + 11x - 4 = 0 ⇔
      3•(3x² + 11x - 4) = 3•0 ⇔
      (3x)² + 11(3x) - 12 = 0 ⇔
      Let U = 3x
      U² + 11U - 12 = 0 ⇔
      (U - 1)(U + 12) = 0 ⇒
      U - 1 = 0 i.e. 3x - 1 = 0
      x = ⅓
      or
      U + 12 = 0 i.e. 3x + 12 = 0
      x = -4