Eigenvector of special matrix - GRE Mathematics Subject Test

Поділитися
Вставка
  • Опубліковано 23 січ 2025

КОМЕНТАРІ • 3

  • @dan-florinchereches4892
    @dan-florinchereches4892 Місяць тому +1

    Well all variants of A have the form (a k-a)
    (K-a a) So rows and columns add to k
    Det(A-lambda*I)=0 means the eigenvalue lambda should be k-2a to result in zero determinant
    Let V(X)
    (Y) Be an eigenvector of A
    A*V=lambda*V
    ( a. k-a). (X). (X)
    (k-a. a). *. (Y). =. (K-2a)* (Y)
    aX+(k-a)Y=(k-2a)X
    (k-a)X+ay =(k-2a)y
    (a-k)X+(k-a)y=0
    => X=Y for eigenvectors
    So only column vector (1,1) works

  • @mscha
    @mscha Місяць тому +2

    Isn't such a matrix always of the form
    ( a b )
    ( b a )
    ? That makes it even more obvious.

    • @mathoutloud
      @mathoutloud  Місяць тому +1

      Yeah, this question wasn’t too complicated, but it was a pretty early question in this particular exam, so a nice warmup.