23: Scalar and Vector Field Surface Integrals - Valuable Vector Calculus

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 81

  • @Caleepo
    @Caleepo 4 роки тому +64

    This is the only clear explanation, I found on yt. I dont know why some profs dont give the visual intuition behind this, while its actually so easy to understand.

    • @moosaawectison6008
      @moosaawectison6008 4 роки тому +7

      Because they themselves don't know these geometrical meanings ig. Each time when I try to debate on these visual intuitions with my professor, either he would roast me 😁 or try to end the session instantly.
      btw this man is doing great job. I learn a lot from this channel.

  • @paradox6647
    @paradox6647 Рік тому +4

    I watched the first part of this and due to the thing at 4:15, it was a bit hard to understand, but I eventually pieced it all together, it is a really complex topic to explain, you did a much better job then if I were to explain it, even if I were to write it down for my future self when I forget. This is the best I’ve seen on yotuube, by a large margin and trust me, I searched far and wide, excellent work!

  • @sportsgig7537
    @sportsgig7537 3 місяці тому +4

    This video is still relevant even today (2024). Thank you for making the video. It has made me appreciate the concept of surface integral of a vector field

  • @3manthing
    @3manthing 4 роки тому +10

    Maybe i'm not the originally targeted part of audince, as i have studied maths, so this things are fairly easy to me, as i'm only refreshing my memory, so i cannot give this channel a proper assessment, not content-wise anyway. When it comes to math, i'm quickly pleased. Channels such as this one, offers me a fun revising of theoretical stuff, with some examples. You might be thinking, why don't i just pick up some math text book. I would, but i'm very lazy. What i can say is your explanations are simply amazing. It is by how you are explaining this things show, how well you understand it on deeper, more intuitive level. And at your age... 😯
    👏 bravo, just bravo

  • @briandwi2504
    @briandwi2504 2 роки тому +5

    That was brilliant. So concise and clear. Many thanks for passing on your insight into this topic. I shall watch that again and take notes. Really great lesson.

  • @nuclearcatapult
    @nuclearcatapult 5 місяців тому +2

    So the reason I was having trouble visualizing a surface integral is because I'm not a 4-dimensional being. That makes sense.

  • @KyaBroderick
    @KyaBroderick Рік тому

    this video saved me before my final. Its so much easier than I thought! Amazing explanation thank you

  • @alicebobson2868
    @alicebobson2868 Рік тому

    this was so useful, ive just started going over my notes and to understand multivriable calc and this was one of the best videos for surface integrals, way better than my lecterur. Youre saving my grades lol

  • @Wiik415
    @Wiik415 29 днів тому

    to be honest you're saving my life, thank you

  • @txikitofandango
    @txikitofandango 4 роки тому +5

    Just like line integrals can be thought of as a chain of varying density, a surface integral can be a curved sheet with varying density.

    • @txikitofandango
      @txikitofandango 4 роки тому +3

      but I like the idea of flattening the surface onto 2-D and getting its height as a function of 2-D location

  • @bentupper4614
    @bentupper4614 2 роки тому

    Excellent. Clear and to the point. No frills needed.

  • @rahulbhavsar1402
    @rahulbhavsar1402 2 роки тому +1

    This explanation is unique all you tube video

  • @fairouztiti90
    @fairouztiti90 Рік тому

    Thank you from Algeria , this is really helping me 💗

  • @MoguinYT
    @MoguinYT 2 роки тому

    holy shit, how can someone explain something so good and so fast, propss my man!!

  • @luismendez933
    @luismendez933 4 роки тому +5

    Increíble!!! 💯
    Muy bien explicado, súper recomendado.

  • @hikmatullahpakhtoon3694
    @hikmatullahpakhtoon3694 4 роки тому +2

    Amazingly and beautifully explained. Thanks professor.

  • @thabanivshoko4275
    @thabanivshoko4275 3 роки тому

    best explanation for surface integrals

  • @strippins
    @strippins 6 місяців тому +1

    I spent four years doing a physics degree starting in 2003. UA-cam existed since 2005 and this sort of content was certainly not available until after I finished.
    I always found the unengaging lectures difficult to follow, printed lecture notes missing insight and text books impossibly heavy.
    I wonder how much more I could have got out of that education had content like this been around to enhance conceptual understanding .

  • @kinzakanwal471
    @kinzakanwal471 2 роки тому

    Thank u sir ...your lecture is very helpfull ,....Everything is clear now ....

  • @abdofast5
    @abdofast5 3 роки тому

    brilliant! I think I'm going to watch all of your videos just for fun.

  • @parniamotamedi2694
    @parniamotamedi2694 4 місяці тому

    perfect explanation

  • @sreajan
    @sreajan 3 роки тому

    Great Lecture Sir. Respect

  • @kancer9725
    @kancer9725 4 роки тому +1

    Thank you for this videos,beacuse of you i am planning to study mathematics

  • @MuskaanMittal
    @MuskaanMittal 5 місяців тому

    At 7:00 , shouldn't the parallelogram's endpoints be r(u, v), r(u+du, v) etc?

    • @MuPrimeMath
      @MuPrimeMath  5 місяців тому +1

      That's correct. As is implied at 4:09, I'm using the ordered pairs as shorthand for the corresponding points on the surface.

  • @mossy60661
    @mossy60661 3 дні тому

    thank you so very much
    may god bless you

  • @kamvc72
    @kamvc72 Рік тому

    great video.. many things got cleared here.

  • @academicstuff548
    @academicstuff548 Рік тому

    thanks for such clear explanation.

  • @Kdd160
    @Kdd160 4 роки тому

    Wow!! You explained this so nicely man!!!

  • @alishaanjum1108
    @alishaanjum1108 2 роки тому

    Beyond excellent😍😍

  • @prateekkumar.1325
    @prateekkumar.1325 4 роки тому

    U rock brother! Thanks a lot for making such videos. It inspires me a lot. Thank u vei much.!

  • @hikmatullahpakhtoon3694
    @hikmatullahpakhtoon3694 4 роки тому

    Fair explanation.

  • @andrewgraybar4984
    @andrewgraybar4984 4 роки тому +1

    Riemann hypothesis, please.

  • @Wan-vp9tp
    @Wan-vp9tp 3 роки тому

    thanks for this explanation video!

  • @celkat
    @celkat 3 роки тому +1

    Thank you for your excellent explanation videos! 🙏 One issue is confusing me: 4:15 when you start explaining the parallelogram in terms of u and v, do you actually mean r(u,v), r(u+du,v) etc, given that this parallelogram is on the surface S?

    • @MuPrimeMath
      @MuPrimeMath  3 роки тому

      Yes; we can think of taking the parallelogram in terms of u,v and evaluating r(u,v) for each corner.

  • @samrachkem2801
    @samrachkem2801 3 роки тому +1

    As far as I know, the order of double integral is not interchangeable. Maybe I could be missing some part of the video but which variable should I be integrate firstly when solving surface integral? Thank you very much!

  • @saiakash707
    @saiakash707 2 роки тому

    Excellent Video, Thanks a lot🎉

  • @anmolmishra4784
    @anmolmishra4784 Місяць тому

    Amazing Thank you so much
    I do appreciate it ❤

  • @rivaille8867
    @rivaille8867 5 місяців тому

    Beautiful 🎉

  • @eyuelbegashaw8609
    @eyuelbegashaw8609 4 роки тому +1

    so what does the surface integral on scalar field and surface integral on vector field gives us ??

  • @MohamadKasem-r9o
    @MohamadKasem-r9o Місяць тому

    This is amazing the best exlpination I have seen until now. I just wondered why do we assume that dS is a parallelogram and not a square as only u or v is changing between each point. Why isn't dS written as du x dv?

    • @MuPrimeMath
      @MuPrimeMath  Місяць тому

      The reason it's a parallelogram is that we're looking at how changing the input parameters u,v affects the output point on the surface. Changing u and changing v will each move the output in a particular direction along the surface, and those two directions are not necessarily perpendicular, so the result will not necessarily be a square or rectangle.

    • @MohamadKasem-r9o
      @MohamadKasem-r9o Місяць тому

      Ah alright. I thought u and v always moved in term of x, y, z, and not as their own vectors. Makes much more sense now. Thank you!

  • @latifmuhammad8874
    @latifmuhammad8874 Рік тому

    Thanks for the video. However, I found that the first surface integral is equal to 48π for some reason. What did I do wrong?

  • @geniusmathematics9123
    @geniusmathematics9123 3 роки тому +1

    Love u sir.
    Given 2 likes from two id...

  • @iyadindia862
    @iyadindia862 4 роки тому +4

    Does the magnitude of cross product in the surface integral have anything to do with the Jacobian..It seems to be similar ones

    • @MuPrimeMath
      @MuPrimeMath  4 роки тому +7

      Yes, they are related! One way to think about a two-variable substitution (x,y) → (u,v) is to think of the original (x,y) region as a flat surface. Then the substitution is a parametrization that looks like
      r(u,v) = [ x(u,v), y(u,v), 0 ]
      If you compute the cross product rᵤ x rᵥ, it ends up being equal to the Jacobian in two dimensions!

    • @iyadindia862
      @iyadindia862 4 роки тому +3

      @@MuPrimeMath
      Thats Cool😍💕

  • @mingdonghe9169
    @mingdonghe9169 4 роки тому

    Thanks a lot!You are the best!

  • @the.lemon.linguist
    @the.lemon.linguist 8 днів тому

    I understand that in the case of some curve r(t) that traces a curve, dr is a tiny change on r, and it can be found with r'(t)dr either by thinking of it (not very rigorously) as taking the dt from dr/dt and moving it over to the other side, effectively finding the "infinitesimal rise" by multiplying the derivative by an "infinitesimal run" or alternatively by thinking of it as converting a 0-form to a 1-form if you think of it in the nature of differential forms.
    In this case, would the analogy apply similarly with this? Would the partial derivative w.r.t. u times the differential du give that tiny change by similarly multiplying the rate by a tiny "run" of sorts?

    • @MuPrimeMath
      @MuPrimeMath  7 днів тому

      If the second variable v is held constant, then r(u,v) traces a curve in the variable u. Therefore the same reasoning applies as in the single-variable case as long as we assume that v doesn't change. So du times the partial derivative with respect to u gives a change in the curve along the u direction.

    • @the.lemon.linguist
      @the.lemon.linguist 7 днів тому

      @ ohhh, i see! thank you so much!

  • @pushkarsinghkaushik300
    @pushkarsinghkaushik300 3 роки тому

    What is the difference between left hand side and right hand side

  • @abaidanwer8962
    @abaidanwer8962 8 місяців тому

    Very nice

  • @learnsimple108
    @learnsimple108 Рік тому

    thank you very much, ARE you s university professor? which university?

  • @ofbguppies2325
    @ofbguppies2325 2 роки тому

    Great vid

  • @LinhTran-uh6lt
    @LinhTran-uh6lt 9 місяців тому +1

    is || ru x rv || = || rv x ru ||
    thank you

    • @MuPrimeMath
      @MuPrimeMath  9 місяців тому +1

      The cross product is anticommutative, meaning that b × a = -(a × b). As a result, the magnitudes of the two are equal.

  • @jaydenc6472
    @jaydenc6472 Рік тому

    Hi, may I know how to solve this, if we do not parameterize it, instead we use the formula dS=sqrt(1 + (dz/dx)^2 + (dz/dy)^2 )dA? What should we substitute in order to eliminate z?

  • @ranam
    @ranam 3 роки тому

    This is also called shadow integral can you please explain that too

  • @hmt001
    @hmt001 3 роки тому

    Thank you

  • @Satya1621
    @Satya1621 2 роки тому

    Awesome

  • @ahmedelshiekh9536
    @ahmedelshiekh9536 3 роки тому

    I have one problem.. can you solve it for me please?!

  • @ehsanAnsar628
    @ehsanAnsar628 5 місяців тому

    Great

  • @kelfinmunene5941
    @kelfinmunene5941 10 місяців тому

    I like this

  • @rohaniyer4672
    @rohaniyer4672 4 роки тому +1

    yeo caltech class of 2024!!

  • @danielvolinski8319
    @danielvolinski8319 Рік тому

    The result of the last example is 12π not 9π.

    • @MuPrimeMath
      @MuPrimeMath  Рік тому +1

      Both of the integrals shown at 26:38 evaluate to 9pi

    • @danielvolinski8319
      @danielvolinski8319 Рік тому

      @@MuPrimeMath OK, I see my error: the z in the first component of the vector field looks like a 2 so instead of z/x, I wrote 2/x.

  • @latifmuhammad8874
    @latifmuhammad8874 Рік тому

    ...as y²

  • @swaroopdewal4626
    @swaroopdewal4626 4 роки тому

    You are wow...!

  • @derrickbecker9856
    @derrickbecker9856 Рік тому

    Pretty sure not four dimensions… still two dimensions even though in 3D

  • @latifmuhammad8874
    @latifmuhammad8874 Рік тому

    Oops I found it; I forgot to square the 4 in (4sin(theta))²

  • @sarkarsubhadipofficial
    @sarkarsubhadipofficial 3 роки тому

    ❤️

  • @irwanahmed001
    @irwanahmed001 4 роки тому +1

    i going to faillllll!

  • @trigon7015
    @trigon7015 4 роки тому

    tsaL

  • @bulldawg4498
    @bulldawg4498 3 роки тому

    Sorry, but I'm disappointed in your explanation of a surface integral over a vector field ... I've seen better ...