Surface Integrals

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ • 81

  • @masoncobb6001
    @masoncobb6001 6 років тому +32

    For anyone wondering about the derivation of the unit normal vector for the sphere: The normal vector for a sphere centered at the origin is always , as this is the vector field that points radially outward from the origin. To derive a unit vector, it is the vector itself divided by its magnitude. The magnitude of the vector is found by taking the square root of x^2 + y^2 + z^2, with the x,y, and z coming from the x,y, and z components of the vector we are finding the magnitude of, which is just . As given in the equation for the sphere, x^2 + y^2 + z^2 =4. Since the magnitude of the vector is the square root of the quantity x^2 + y^2 + z^2, which is equal to 4 by the equation for the sphere, the magnitude is found to be equal to 2. The original vector then just needs to be divided by the magnitude, hence the 1/2 out in front of the for the unit normal vector.

    • @KevinS47
      @KevinS47 5 років тому +2

      That was a crystal clear explanation, thank you!

    • @adosar7261
      @adosar7261 5 років тому

      why ds=dv/dρ and not ds=dv/dθ or ds=dv/dφ?

    • @newyorkguy158
      @newyorkguy158 4 роки тому

      Thanks. I didn't know how he got the unit normal vector of the sphere. You are very thoughtful to provide this explanation.

    • @cumter_69420
      @cumter_69420 Рік тому

      Oh my god thank youuu💞💞💞

  • @schrodingerscat3912
    @schrodingerscat3912 7 років тому +169

    i don't know who spread the word that calc3 was easier than calc2 but no

    • @jamesperry4470
      @jamesperry4470 6 років тому +25

      seriously. Calc II like 1/10th the visuospatial skills and critical thinking

    • @marybean2231
      @marybean2231 5 років тому +5

      I personally loved calc3 way more because I can logic my way through it and it's easy to read. Memorization isn't my thing but I love this!

    • @Name-jw4sj
      @Name-jw4sj 5 років тому +7

      The concepts in Calc3 are definitely more difficult, however, the computations are harder in Calc2.

    • @nitotech
      @nitotech 5 років тому +1

      Both easy if done with enough practice.

    • @phantomfaith2001
      @phantomfaith2001 2 роки тому +1

      @@Name-jw4sj no

  • @jonathanrivera5712
    @jonathanrivera5712 9 років тому +38

    Very organized and consciousness towards different audiences. Color coded, preview, nice! Well done!

  • @esenniiazov
    @esenniiazov 8 років тому +54

    change speed to 1.25
    Your are welcome!

  • @EricPham-ui6bt
    @EricPham-ui6bt Рік тому +1

    If we use geometric element like square or circle like pixel in computer term on one dimension then intergate on a limited range and domain and error trapping method

  • @boletokuchhbhi0003
    @boletokuchhbhi0003 4 роки тому

    the best explanation of surface integrals
    thank you sir

  • @marybean2231
    @marybean2231 5 років тому +2

    Simple and elegant explanations!

  • @serialglobetrotter
    @serialglobetrotter 9 років тому +76

    r u a robot ?

  • @ModernTruthRevelation
    @ModernTruthRevelation 8 років тому +1

    GOSH THAT IS AWESOME. PLEASE MAKE THAT EXCELLENT WORK CONTINUE

  • @cmdrbobert9862
    @cmdrbobert9862 Рік тому +3

    I'm a bit confused about how you are calculating n hat dot dS. Why ? did you take a derivative some where?

  • @AayushDhankhar-l4n
    @AayushDhankhar-l4n 7 місяців тому +1

    you solved my problem 👍

  • @andreluisal
    @andreluisal 9 років тому +3

    Excelllent video!!!! Thanks!

  • @andresmena8278
    @andresmena8278 4 роки тому +1

    BEST EXPLANATION EVER OD DOUBLE AND SURFACE INTEGRALS> I LOVE THAT YOU COMPARED BOTH OF THEM TO SHOW THE DIFFERENCE AND SIMILARITIES AS WELL AS GAVE ALL THE POSSIBLE CASE. AMAZING VIDEO!!

  • @mr6462
    @mr6462 6 років тому +2

    very helpful drawing! thank you!

  • @mohammedkhan4990
    @mohammedkhan4990 5 років тому

    Excellent presentation!!!

  • @johannes5000
    @johannes5000 7 років тому +1

    amazing video, simply amazing!

  • @narutouzumakix9201
    @narutouzumakix9201 6 років тому

    awesome video, quite clear

  • @sureshakella4263
    @sureshakella4263 Рік тому

    Nice

  • @nirashrov1071
    @nirashrov1071 8 років тому +1

    Awesome job thanks a lot!!!!!

  • @abdelaziz7298
    @abdelaziz7298 9 років тому

    good movie thanks you very mutch

  • @Gipsy4u
    @Gipsy4u 9 років тому

    Great work, very helpful, Thanks

  • @jakehealthx
    @jakehealthx 7 років тому

    Very informative! Thank you so much!

  • @kewtomrao
    @kewtomrao 4 роки тому +1

    Not bad! But our sirs explanation is top class n he recommended everyone to check this vid out. He has 22 research papers!

  • @Arseniy_Arseniy
    @Arseniy_Arseniy 7 років тому

    Bravo! I love this systimatization(regimentation)

  • @davidfield5295
    @davidfield5295 8 років тому

    super useful and well organized

  • @stephenhopkins5177
    @stephenhopkins5177 10 років тому +1

    You print, how cute

  • @TheArt832
    @TheArt832 10 років тому

    Very Helpfull.Thanks.

  • @frankyesjosh587
    @frankyesjosh587 4 роки тому

    Wonderfull lf you have problem for sleeping !

  • @ananurlaila255
    @ananurlaila255 7 років тому

    When F= (yz + zx + xy ) through an area S which is part of a circle with radius a in the first quadrant of the xy plane. Calculate the flux?

  • @7SOON26
    @7SOON26 8 років тому +2

    thanks that very helpful

  • @hiw92
    @hiw92 4 роки тому

    thank you very much

  • @bulldawg4498
    @bulldawg4498 6 років тому +4

    You glossed over too many details in the sphere example. Could use more detail on normal vector determination, too. Overall, very helpful.

  • @esraasalamaq
    @esraasalamaq 5 років тому

    شكرا

  • @thomasdiprima2629
    @thomasdiprima2629 5 років тому

    Surface area of a sphere = 4pir^2 which would be 16pi for this problem. How did he get 32pi?

  • @aanandhatamil-4577
    @aanandhatamil-4577 Рік тому

    Using Gauss divergence theorem ,the last sum answer is 3×volume of sphere=256π
    Is it correct or not,anyone guide

  • @kyrulazwari
    @kyrulazwari 7 років тому

    Thanks!

  • @SSJPokaLink
    @SSJPokaLink 6 років тому +1

    Doubt this will be seen before my final lol, but can anyone help explain how he derives the normal vector in the second example?
    Since he's using the formula form that converts the vector field into a scalar of two variables, I want to think we need to some rphi X rtheta cross product, but I'm sure I'm just thinking about getting normal vectors wrong.

  • @sakshishukla5255
    @sakshishukla5255 7 років тому +14

    very difficult to understand

  • @scimitar95
    @scimitar95 9 років тому +11

    When youre doing the unit vector, why dont you divide it by its magnitude?

    • @MrHjld
      @MrHjld 7 років тому

      I don't get this either!

    • @keppersjc4018
      @keppersjc4018 7 років тому +1

      because it cancels out

    • @cobalt789
      @cobalt789 7 років тому +2

      the magnitude of any unit vector is 1.

    • @ssctarget7953
      @ssctarget7953 6 років тому

      Any body got the answer

    • @latzobear
      @latzobear 6 років тому

      @@ssctarget7953 magnitude of a unit vector is 1

  • @AnasKhan-eo4xn
    @AnasKhan-eo4xn 7 років тому

    Are you sure you explained double-integrals correctly?
    As far as I know, double-integrals are integrals of 3-dimensional functions and they give you the volume of the function in some defined region. The way you say it, they don't appear to be any different from single integrals.

  • @adosar7261
    @adosar7261 5 років тому

    why ds=dv/dρ and not ds=dv/dθ or ds=dv/dφ?

  • @remygelenidze980
    @remygelenidze980 7 років тому

    "There is a flux form which looks like double integral over a surface of some vector fields dotted with the normal vector times the surface element"
    I don't understand this sentence

    • @rmsvideos1335
      @rmsvideos1335 7 років тому +4

      Remy Gelenidze the flux form basically shows the flux through the entire area. The double integral is just multiplying the summed dx and dy, so length times width should ring a bell here. And the vector function is just your function f, the normal vector is the direction perpendicular to that area given by dxdy, so you just want to find how much of your vector function is in the direction of the surface dxdy in the direction perpendicular to it (normal vector). Hope this helps

  • @akashchaurasia3587
    @akashchaurasia3587 6 років тому +1

    solve one question by taking surface of ellipsoid.

  • @thomasanderson4877
    @thomasanderson4877 5 років тому

    Thank uuuuuu

  • @체그-c9s
    @체그-c9s 3 роки тому

    ㄹㅇ 설명 개찰지네

  • @mounir9311
    @mounir9311 6 років тому

    yes

  • @milesdavidsmith
    @milesdavidsmith 7 років тому

    varibles

  • @chramarajupusapti7428
    @chramarajupusapti7428 8 років тому +1

    dont go speed in subjects

  • @curiousbit9228
    @curiousbit9228 6 років тому

    Wow!

  • @bernarddoherty4014
    @bernarddoherty4014 5 років тому +1

    Holy shit! This guy put me to sleep in exactly 7 minutes. I am gonna play him every night to doze off. Very very monotonic.

  • @relexmind7331
    @relexmind7331 5 років тому +2

    Please speak slowly i can't hear you properly

  • @JakeMcBain
    @JakeMcBain 10 років тому +10

    wow...very dry..........

    • @Ensign_Cthulhu
      @Ensign_Cthulhu 9 років тому +8

      The voice sounds synthesised or electronically masked, which I find extremely hard on the ear.

  • @fortoday04
    @fortoday04 9 років тому

    horrible

  • @ente866
    @ente866 2 роки тому

    His voice is unbearable