Math Olympiad Geometry Problem | How to solve for "x" in this problem? @MathOlympiad0

Поділитися
Вставка
  • Опубліковано 8 лис 2024

КОМЕНТАРІ • 2

  • @key_board_x
    @key_board_x 2 місяці тому +1

    tan(x) = AC/AB
    tan(x) = (3 + a)/b
    Triangle ABD → AB² + AD² = BD²
    b² + a² = 5²
    a² + b² = 25
    Triangle ABC → AB² + AC² = BC²
    b² + (3 + a)² = 7²
    b² + 9 + 6a + a² = 49
    a² + b² + 6a = 40 → recall: a² + b² = 25
    25 + 6a = 40
    6a = 40 - 25
    6a = 15
    a = 15/6
    a = 5/2
    Recall: a² + b² = 25
    b² = 25 - a²
    b² = 25 - (5/2)²
    b² = (100/4) - (25/4)
    b² = 75/4
    b = ± √(75/4) ← as b represents a length, we keep only the positive value
    b = √(75/4)
    b = √[3 * (25/4)]
    b = √[3 * (5/2)²]
    b = (5/2).√3
    b = (5√3)/2
    Recall:
    tan(x) = (3 + a)/b → where: a = 5/2
    tan(x) = [3 + (5/2)]/b
    tan(x) = [(6/2) + (5/2)]/b
    tan(x) = (11/2)/b → where: b = (5√3)/2
    tan(x) = (11/2)/[(5√3)/2]
    tan(x) = (11/2) * [2/(5√3)]
    tan(x) = 11/(5√3)
    tan(x) = (11 * √3)/(5√3 * √3)
    tan(x) = (11√3)/15
    → x = 51.7868 °

    • @MathOlympiad0
      @MathOlympiad0  Місяць тому

      You are a genius and so sweet my friend ❤️❤️