Math Olympiad | A Nice Exponential Problem 😊

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 413

  • @the_energycoach
    @the_energycoach 11 місяців тому +149

    Just write 148 in binary notation can do the job very easily.

    • @GCOS62
      @GCOS62 11 місяців тому +14

      Came here to say this. Easy if you are a programmer.

    • @IamAshishGupta
      @IamAshishGupta 11 місяців тому +5

      Bilikul

    • @HexaMartinus
      @HexaMartinus 11 місяців тому

      you are not matematician, please shut up

    • @АлександрФролов-ь7ц
      @АлександрФролов-ь7ц 11 місяців тому +6

      The first that I've thought.
      You can represent any number in binary => as sum of pows of 2.

    • @lucasnogueira4995
      @lucasnogueira4995 11 місяців тому +4

      Can u pls explain how u do this?

  • @jamesholden4571
    @jamesholden4571 11 місяців тому +98

    7, 4, 2 - brute force in my head. 128+16+4
    Not elegant, but quick.

    • @christopherdean1326
      @christopherdean1326 11 місяців тому +6

      Same here...

    • @mmagic5753
      @mmagic5753 11 місяців тому +1

      em... 他们的数学确实不行@@christopherdean1326

    • @fv2023elciosilva
      @fv2023elciosilva 11 місяців тому +5

      I did the same. Easy

    • @sivadinesh34
      @sivadinesh34 11 місяців тому +4

      same bro

    • @afrozalam2616
      @afrozalam2616 10 місяців тому +5

      But there is not compulsory that value of a will be 2 it also will be 7 or 4

  • @GRAHAMAUS
    @GRAHAMAUS 11 місяців тому +28

    2,4,7. You can do it in your head if you are familiar with common numbers in binary, as most computing hardware people are :)

    • @RabblesTheBinx
      @RabblesTheBinx 2 місяці тому

      I mean, you don't even need to be that familiar with binary. You just need to know powers of 2 up to 7. It's pretty intuitive that the only combination of 3 variables that will add up to 148 are 2, 4, 7, even if you brute force it.

  • @ganeshdas3174
    @ganeshdas3174 Рік тому +29

    Since the base common 2 , therefore , under the conditions of a

    • @КирилАнастасов
      @КирилАнастасов 11 місяців тому +1

      yes, but to prove that this is the only solution you need to then calculate for c = 6. while when you reach to 2^a*(1+..) = 2^n*(odd number) a is n and only n and this is a theorem.

    • @ganeshdas3174
      @ganeshdas3174 11 місяців тому +1

      @@КирилАнастасов only tried to suggest an alternative and quicker solution in order to save time, taking given condition (a

    • @TheReactor8
      @TheReactor8 11 місяців тому +2

      @@КирилАнастасовyou can take the next power and see it has no solution. Smaller power after that pointless as failed higher power is needed for a solution to work. QED

    • @rosariobravo9165
      @rosariobravo9165 11 місяців тому +1

      Me encantan estos ejercicios!!! Se resuelven fácilmente con cálculo mental. Sigo la misma lógica que usted. Son potencias de 2.
      Creo que lo importante que aporta este video es el método para resolverlo cuando no es tan fácil.

  • @MarioRBSouza
    @MarioRBSouza 10 місяців тому +5

    Muito mais simples assim:
    Compor tudo com base 2 elevado a "n":
    2 4 8 16 32 64 128
    148 - 128 = 20
    20 = 4 + 16
    Pronto: 148 = 4 + 16 + 128
    a=2 b=4 c=7
    Olimpíada requer rapidez !

  • @UNFORGIVEN1821
    @UNFORGIVEN1821 11 місяців тому +23

    This equation has 6 different solutions if there is not any restriction which is biger of a. b, c.

    • @Suhaim999
      @Suhaim999 11 місяців тому +1

      Yes

    • @maxslesarev
      @maxslesarev 10 місяців тому +2

      Absolutely. Any combination of (2, 4, 7) will be a solution: (2, 7, 4), (4, 2, 7), (4, 7, 2), etc.

    • @oahuhawaii2141
      @oahuhawaii2141 10 місяців тому +7

      There are an infinite number of solutions because there's no restriction on using integers only. I can rewrite the problem as finding the sum of any 3 numbers to be 148: a' + b' + c' = 148 . I can chose two random values for a' and b' , and then compute c' as c' = 148 - a' - b' . This has an infinite number of solutions. Then, I can cast any such solution to the original problem by taking the log base 2 of a' , b' , and c' to get a, b, and c. The numbers can be complex values, too. [Remember that any complex number can be converted to r*e^(i*θ) form, and it's easy to get the log base 2 of that, even if it gets messy.]
      For fun, let's use 2^e and 2^π as two of the three terms to sum up to 148 . We have:
      2^e + 2^π + 2^c = 148
      2^c = 148 - 2^e - 2^π
      c = ln(148 - 2^e - 2^π)/ln(2) ≈ 7.0508731651623102433373853534896 .
      Thus, a = e , b = π , and c = ln(148 - 2^e - 2^π)/ln(2) ≈ 7.0508731651623102433373853534896 .
      We can have more fun with 148 = 128 + 32 - 12 = 2^7 + 2^5 + 2^c , with a = 7 and b = 5 .
      2^c = -12 = 12*(-1) = 12*e^(i*π*(1+2*k)) , k any integer
      c = ln[12*e^(i*π*(1+2*k))]/ln(2)
      c = ln(12)/ln(2) + i*π*(1+2*k)/ln(2)
      c = 3 + ln(1.5)/ln(2) + i*π*(1+2*k)/ln(2) , k any integer

    • @edgardobenavides3557
      @edgardobenavides3557 8 місяців тому +2

      You re right! And don not forget if a=b=c.

  • @kuntalchatterjee5182
    @kuntalchatterjee5182 8 місяців тому +13

    You are partially correct..
    i.e =
    Now the triplets can form in following manner :
    1.a=7,b=4,c=2
    2.a=7,b=2,c=4
    3.a=2,b=7,c=4
    4.a=2,b=4,c=7
    5.a=4,b=7,c=2
    6.a=4,b=2,c=7
    In each case :
    2⁷+2⁴+2²=128+16+4=148
    And you need to impose the condition that a,b,c are positive integers

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      I used complex numbers, just for fun, by using 148 + 1 - 1 = 148:
      a = ln(148)/ln(2)
      b = 0
      c = i*π*(1+2*k)/ln(2), k integer

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      If you're dealing with natural numbers, such as 148, then it's best to limit the powers to nonnegative integers. By including 0, it's possible to represent odd numbers, such as 7: 2² + 2¹ + 2⁰ . The lowest sum of 3 nonnegative integer powers of 2 is 3. It's possible to get down to sums of 2 or 1 using negative integer powers. Any sum below that requires complex numbers.

  • @theeternalsw0rd
    @theeternalsw0rd 11 місяців тому +5

    Divide both sides by 4. Let x = a-2, y = b-2, z = c-2 then 2^x + 2^y + 2^z = 37. Since 37 is odd, one of the terms must be odd on the left. Let z=0 so 2^x + 2^y = 36. Divide both sides by 4. Let j = x-2, k = y-2 then 2^j + 2^k = 9. Since 9 is odd, one of the terms must be odd on the left. Let k=0 so 2^j = 8. 2^j = 2^3 so j=3. Now we plug in our solutions to the previous substitutions. j = 3 = x - 2 = a - 2 - 2 so a = 7. k = 0 = y - 2 = b - 2 - 2 so b = 4. z = 0 = c - 2, so c = 2. a = 7, b = 4, c = 2 is the solution, or more accurately 7, 4 , and 2 are the combination of solutions for a, b, and c that lead to all of the solutions.

  • @l.w.paradis2108
    @l.w.paradis2108 11 місяців тому +10

    I like recursive procedures. It really builds skill.

  • @poojavyas4852
    @poojavyas4852 9 місяців тому +1

    Nice method to solve equation

  • @dinlendiricidrtv
    @dinlendiricidrtv 8 місяців тому +2

    Thank you very much my dear friend,

  • @vientan6375
    @vientan6375 7 місяців тому +2

    Vì 148 < 2^8 nên a, b, c < 8.
    Trường hợp 1:
    a = 7 thì 2^a = 2^7 = 128 => 2^b + 2^c = 20.
    Lại vì 2^5 = 32 > 20 nên b, c < 5
    Xét b = 4 thì 2^b = 2^4 = 16 => 2^c = 4 => c = 2
    Vậy ta tìm được một bộ nghiệm (a, b, c) = (7, 4, 2) và các hoán vị của nó.
    Xét b = 3 thì 2^b = 2^3 = 8 => 2^c = 12 , loại vì 12 không phải số chính phương.
    Xét b = 2 thì c = 4
    Xét b = 1 thì 2^b = 2 => 2^c = 18, loại vì 18 không phải số chính phương.
    Xét b = 0 thì 2^b = 2^0 = 1 > 2^c = 19, loại vì 19 không phải số chính phương.
    Trường hợp 2
    a = 6 thì 2^a = 2^6 = 32 => 2^b + 2^c = 112.
    Lại vì 2^7 = 128 > 112 nên b, c < 7
    Xét b = 6 thì 2^6 = 64 => 2^c = 58. Loại vì 58 không phải số chính phương.
    Xét b = 5 thì 2^b = 2^5 = 32 => 2^c = 80. Loại vì 80 không phải số chính phương.
    Do vai trò của a, b, c là như nhau. Nên bài toán chỉ có một bộ nghiệm (a, b, c) = (7, 4 , 2) và các hoán vị của nó: (7, 4, 2); (7, 2, 4); (4, 2, 7); (4, 7, 2); (2, 7, 4) và (2, 4, 7).

  • @reachkramesh
    @reachkramesh 10 місяців тому +3

    Let's assume a = 2 and b=4, then applying the assumption in the equation,
    2 power c = 148-20 = 128
    2 power c = 2 power 7
    Hence, a = 2, b = 4 and c = 7

  • @chiderahelias3106
    @chiderahelias3106 9 місяців тому +7

    Actually, there are 6 possible answers for a, b, c because of the associative property of addition. So (a,b,c) = (2,4,7) or (2,7,4) or (4,2,7) or (4,7,2) or (7,2,4) or (7,4,2)😊

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому +1

      Actually, (a, b, c) aren't restricted to whole numbers, so there are an infinite number of solutions:
      (0, 0, log2(146)) { 1+1+146 }
      (-1, -1, log2(147)) { 1/2 + 1/2 + 147 }
      (i*π/ln(2), 0, log2(148)) { -1 + 1 + 148 }

  • @PS-eg2bn
    @PS-eg2bn 11 місяців тому +5

    Mind = blown
    Thanks for good explanation.
    In comment section, some are getting cocky but no one presented any systematic method

  • @balthazarbeutelwolf9097
    @balthazarbeutelwolf9097 11 місяців тому +14

    One needs the restriction that a,b,c are integers. Otherwise there are solutions such as a=pi, b=pi, c=7.026247...

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      You can use complex numbers, too.

  • @축복이-x6u
    @축복이-x6u 11 місяців тому +1

    asnwer=a=2.b=4c=3 isit

  • @pcsharma6295
    @pcsharma6295 10 місяців тому +3

    If you count powers of 2, you cannot guo beyond 2^7. as 2^8 will exceed 148. Therefore let us assume a=7, that makes 2^7=128
    Balance is 148-128=20
    If we assume b next, it cannot exceed 4 so b=4
    Now the total is 128+16 =144
    Balance is 4 means 2^2. Therefore c=2
    Therefore a,b,c=7,4,2
    They can be in any more combination

  • @topkatz58
    @topkatz58 11 місяців тому +5

    Treat this like converting to base 2.
    2^a = 128
    2^b = 16
    2^c = 4
    Therefore a=7, b=4, c=2

  • @SamBabakpoor
    @SamBabakpoor 10 місяців тому +2

    The equation has infinite solutions because it is one equation and three unknowns. One of them is
    a=b=c=(ln(148/3))/ln2

    • @namsawam
      @namsawam 10 місяців тому

      she tacitly assumed a, b, c to be natural numbers. ((Diophantine equation))
      You can't see so closely.

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      Just for fun, I used complex numbers with 148 + 1 - 1 = 148:
      a = ln(148)/ln(2)
      b = 0
      c = i*π*(1+2*k)/ln(2), k integer

  • @Lars_Porsenna
    @Lars_Porsenna 11 місяців тому +6

    148 попробуем разложить на сумму трех чисел с основанием 2. Одно из слагаемых 128, так как следующие степени числа 2 в сумме дают 64+32=96, что при вычитании из 148 дает 52, а это число не степень 2., далее 148-128=20, 20 это 16 и 4 однозначно, следовательно 148=2⁷+2⁴+2², a,b,c(7,4,2)

  • @jeanlemire2681
    @jeanlemire2681 6 місяців тому +3

    Simple thinking gets me the highest exponent of 2 that is lower than 148. This number is 7 for 2^7=128. Thus 148-128=20. Now, which exponent of 2 is lower than 20. The answer is 4 for 2^4=16. Thus 20-14=4. And, of course, 2^2=4. The answer is 7, 4 and 2. So, since there are not any requirements for the values of a, b and c, you can have these combinations showing their relative values in increasing (or decreasing) order : abc, acb, bac, bca, cab, cba. Then, there are 6 solutions. All this suppose that a, b and c must be integers. Otherwise, there can be infinite possibilities.

  • @dipworld4467
    @dipworld4467 11 місяців тому +2

    Very nice handwriting.

  • @anatolykatyshev9388
    @anatolykatyshev9388 10 місяців тому +4

    Answer us obvious:
    a=b=c=ln(148/3)/ln(2)

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      These solutions for (a, b, c) are easy, too:
      (7, 1/log(2), 1/log(2)) { 128 + 10 + 10 }
      (2/log(2), 5, 4) { 100 + 32 + 16 }
      (7, 5, 3 + ln(1.5)/ln(2) + i*π/ln(2)) { 128 + 32 + -12 }
      (log2(148), 0, i*π/ln(2)) { 148 + 1 + -1 }
      (log2(150), 1/2+i*3*π/ln(16), 1/2-i*3*π/ln(16)) { 150 + (-1+i) + (-1-i) }

  • @Sergueiss
    @Sergueiss 10 місяців тому +3

    Divide left and right by 4 and the response appears immediately.

  • @Marcos33914
    @Marcos33914 11 місяців тому +2

    Very good solution.

  • @Llal79
    @Llal79 10 місяців тому +2

    Simply Amazing!!! 🎉

  • @almeller
    @almeller 11 місяців тому +12

    Please stop calling every basic math problem “a nice Olympiad one”. There is nothing Olympiad about this. It’s trivial and is solvable in 10 seconds without a pen and paper.

    • @user_cy1er
      @user_cy1er 11 місяців тому +4

      yes as a 7th grade i literally thought of 128+16+4 which is 7,4,2

  • @NirupamAkaTesla
    @NirupamAkaTesla 6 місяців тому +1

    Great 👍🏻.
    Shortcut approach
    148 = 128+16+4
    Value of a,b,c can be 7,4,2

  • @Антон-е4ю7й
    @Антон-е4ю7й 10 місяців тому +20

    Самое прикольное решение - записать 148 в двоичной системе. 148 = 10010100. Разряды с единичкой 7, 4 и 2)

    • @olegkulinich9886
      @olegkulinich9886 10 місяців тому +3

      Тсс, не пали контору 😂

    • @maxm33
      @maxm33 10 місяців тому +2

      Осталось не забыть про перестановки и доказать единственность )

    • @ДенисГончаров-х5м
      @ДенисГончаров-х5м 7 місяців тому

      Это единственное правильное решение. Как бы она решала если бы неизвестных было к примеру 20 скажем для числа 2 в 20 минус 1?

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      148 = 94h = 10010100b

  • @saltydog584
    @saltydog584 11 місяців тому +16

    Turn it into binary and the digit positions give the answer - I did it in less than a minute in my head that way.

    • @StevenLubick
      @StevenLubick 11 місяців тому

      Same here, I solved it before clicking on the thumbnail image.

    • @dougnettleton5326
      @dougnettleton5326 11 місяців тому +2

      ​@StevenLubick
      I only clicked the video to find out what the heck she could be doing for 12 minutes.

    • @s.m.a9324
      @s.m.a9324 11 місяців тому +2

      Can you write the solutio in your methode. Please

    • @saltydog584
      @saltydog584 11 місяців тому

      @@s.m.a9324 148 in binary = 1001010. The 2nd digit from the right indicates a value of 4, the 4th digit from the right indicates a value of 16 and the 7th digit indicates a value of 128. 128+16+4 =148. This is possible because all values are powers of 2.

    • @561_OmprakashTripathy
      @561_OmprakashTripathy 11 місяців тому

      Easy method using computer programming is to write it in binary which is 10010100 1 in 8th place, 5th place and 3rd place, 8-1=7, 5-1=4, 3-1=2@@s.m.a9324

  • @燕北山前萬梅山莊主人
    @燕北山前萬梅山莊主人 11 місяців тому +5

    If you grew up with The Book of Change, aka I Ching 易經, then you realize it is Yin Yang 陰陽 and realize that writing the numbers in binary gives you the answers right away.

  • @Просветление-я9м
    @Просветление-я9м 7 місяців тому +2

    148 - 20 = 128 (наибольший квадрат от двух) то есть одно из чисел 2^7
    А 20 можно получить только из двух 16 и 4, значит 2^2, и 2^4 остаётся

  • @op_gamer
    @op_gamer 10 місяців тому +2

    Very nice, thankyou

  • @محمدمحمدالمراكبي
    @محمدمحمدالمراكبي 11 місяців тому +2

    Good job

  • @KueteValdes
    @KueteValdes 6 місяців тому +1

    In fact there are 3C3 ie ( 3 combination 3 )number of solutions to a , b and c

  • @chandandas4152
    @chandandas4152 6 місяців тому +1

    Amazing 😊😊

  • @harshpathak2359
    @harshpathak2359 Рік тому +2

    Your video is very informative videos mam

  • @Huaxiaviewpoint
    @Huaxiaviewpoint 8 місяців тому +42

    Your answer is incomplete. There are several more answers: a,b,c=2,7,4 a,b,c=4,2,7 a,b,c=4,7,2 a,b,c=7,2,4 a,b,c=7,4,2

    • @cjoor
      @cjoor 8 місяців тому +3

      Oh please

    • @faisaljunaid5826
      @faisaljunaid5826 8 місяців тому +3

      It's because all unknown terms composed of similar base which is 2.

    • @jakefromstatefarm6969
      @jakefromstatefarm6969 8 місяців тому +8

      If you want to be pedantic, your answer is incomplete too. The question isn't limited to integers, and there are an infinite number of solutions.

    • @Huaxiaviewpoint
      @Huaxiaviewpoint 8 місяців тому +2

      @@jakefromstatefarm6969 This is the entire answer, there is no other answer.

    • @jakefromstatefarm6969
      @jakefromstatefarm6969 8 місяців тому +4

      @@Huaxiaviewpoint what about a=0, b=0, c=log2 146.

  • @satyadev3848
    @satyadev3848 10 місяців тому +2

    its too effective solution

  • @benyasir423
    @benyasir423 Рік тому +2

    Le problème on peut le poser de la manière suivante:
    On cherche dans l'espace de repere (O ; x ; y ; z ) les points M( a; b ; c ) dont les coordonnées vérifient l'équation 2^a + 2^b + 2^c = 148.
    L'enssmble des solutions, s'il n'est pas vide, contiendra des triplets différents ou égaux.
    Par la nature de l'équation les nombres a, b, et c sont permutables ce qui donne 3! = 6 triplets égaux ou différents.
    Et comme les nombres obtenus sont deux à deux distincts alors on a 6 triplets solutions donc 6 points .

  • @albertoramotti2616
    @albertoramotti2616 3 місяці тому +1

    There is a lot of simpler ways to resolve this problem, I propose this one. Powers of 2 end in 2,4,6 or 8. 148 ends in 8 so the possible combinations are 2,2,4 or 4,6,8. The powers involved are up to 128, using 2,2,4 It is not possible to get to 148, at most with 32,32,64 you get to 128, and Is really simple and immediate, analysing the possible combinations, find 4, 16 and 128.

  • @waduz4891
    @waduz4891 11 місяців тому +2

    Bravo bombai!

  •  11 місяців тому +5

    Divide both sides to 4. and 37 is 32 + 4 + 1 which are powers of 2. a-2=5, b-2=2, c-2=0. So a=7, b=4, c=2.

  • @dilipgawali6567
    @dilipgawali6567 8 місяців тому +2

    आपने बिल्कुल् सही तरीके से समझाया है लोगो की कमेंट पे मत जाए आप सबका कहना सही हो सकता है madam ने पहले a की वैल्यू निकाली इस लिये a ki value 2 आयी यदि madam ने b या c पहले लिया hota to b या c की वैल्यू भी 2 ही आती

  • @NithyaGhumare
    @NithyaGhumare 11 місяців тому +2

    Love the explanation

  • @santosfelixchaves9800
    @santosfelixchaves9800 11 місяців тому +5

    Excelente...!!!!!! Tú explicación es perfecta.

  • @luisx189
    @luisx189 10 місяців тому +2

    Ese problema tiene una solución extremadamente facil, la base se trataria de entender, que el 2 elevado a cualquier potencia tiene un comportamiento al sistema binario en las computadoras

  • @rizkydarmawan4125
    @rizkydarmawan4125 8 місяців тому +1

    Nice 👍🏿

  • @JPTaquari
    @JPTaquari 11 місяців тому +3

    As we have practice, just by looking at the problem comes the solution. In this case, as there is no great order of the exponents, we can have six different combinations of solutions.
    There is a trick that simplifies the resolution:
    2^a + a^b + 2^c = 2² * 37
    Step 2² to the other side and divide, then it's easy and even an elementary school child can find the solution:
    2^a-2 + 2^b-2 + 2^c-2 = 37
    It has to be: 1 + 4 + 32
    So one of the six solutions is:
    a = 2
    b = 4
    C = 7
    Proof: 4 + 16 + 128 = 148

    • @lnmukund6152
      @lnmukund6152 9 місяців тому +1

      Mr up why all this in wanted rubbish nearest 2 power of 148 is 128,+20, 20 in 2 summation powers is 4+16, very easy, lengthy unwanted is not required at all
      Mukund

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому +1

      You've been sloppy in your writing:
      2^a-2 + 2^b-2 + 2^c-2 = 37
      You're missing parentheses to group the exponents to handle proper precedence rules, so you have:
      2^a + 2^b + 2^c = 43
      You should've written:
      2^(a-2) + 2^(b-2) + 2^(c-2) = 37

  • @jomariraphaellmangahas1991
    @jomariraphaellmangahas1991 11 місяців тому +3

    128 + 16 + 4
    a, b, and c can be any in order
    There are 3 combinations of the answer. Therefore there are 6 possible answers for a, b, and c
    2, 4, 7

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      You wrote "1, 4, 7". The answer is any of 6 permutations of "2, 4, 7" if only integers are allowed.
      Actually, (a, b, c) aren't restricted to whole numbers, so there are an infinite number of solutions:
      (0, 0, log2(146)) { 1+1+146 }
      (-1, -1, log2(147)) { 1/2 + 1/2 + 147 }
      (i*π/ln(2), 0, log2(148)) { -1 + 1 + 148 }
      (i*2*π/3/ln(2), -i*2*π/3/ln(2), log2(149))

  • @osmanahmed4487
    @osmanahmed4487 3 місяці тому +1

    thank you great

  • @ВячеславМихайлов-р7ч
    @ВячеславМихайлов-р7ч 10 місяців тому +2

    Перевода не знаю, но А ,В и С могут быть равными и 2 и 4 и 7 или 4, 2, 7 и в других комбинациях.

  • @vijaymaths5483
    @vijaymaths5483 11 місяців тому +2

    Excellent 👏👏👏

  • @philipkudrna5643
    @philipkudrna5643 11 місяців тому +3

    The easy solution in 5 sec in my head: 2^7+2^4+2^2=128+16+4=148
    So (2,4,7) is certainly a solution set. But maybe there are more solutions? (at least you can have various combinations, of which is a, b or c, if it is unclear that eg a>b>c is one condition)

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      Actually, (a, b, c) isn't restricted to whole numbers, so there's an infinite number of solutions, where 2^a + 2^b + 2^c = 148 .
      128 + 10 + 10:
      (7, 1/log(2), 1/log(2))
      100 + 32 + 16:
      (2/log(2), 5, 4)
      128 + 32 + -12:
      (7, 5, 3 + ln(1.5)/ln(2) + i*π/ln(2))
      146 + 1 + 1:
      (log2(146), 0, 0)
      147 + 1/2 + 1/2:
      (log2(147), -1, -1)
      148 + 1 + -1:
      (log2(148), 0, i*π/ln(2))
      149 + (-1+i*√3)/2 + (-1-i*√3)/2:
      (log2(149), i*2*π/ln(8), -i*2*π/ln(8))
      150 + (-1+i) + (-1-i):
      (log2(150), 1/2+i*3*π/ln(16), 1/2-i*3*π/ln(16))

  • @dhairyasakhare6497
    @dhairyasakhare6497 11 місяців тому +2

    Thank you soo much mam for the explanation

  • @arvindkulkarni6580
    @arvindkulkarni6580 Рік тому +2

    Nice video mam

  • @mitz777
    @mitz777 3 місяці тому +1

    Всё на много проще:
    • перевести число 148 в двоичную систему : 10010100
    • так как у нас 3 единицы в числе, то они соответствуют степеням двойки : 2, 4, 7
    Значит, 148 = 2^2 + 2^4 + 2^7
    Ответ: (2,4,7), (2,7,4), (4,2,7), (4,7,2), (7,2,4), (7,4,2)

  • @dakuridurgaprasad7318
    @dakuridurgaprasad7318 10 місяців тому +3

    So much Laborious

  • @ukajimitsuo358
    @ukajimitsuo358 4 місяці тому +1

    a,b,c are integer and a>b>c or a=b=c brings an answer.

  • @vishwanathkulkarni2565
    @vishwanathkulkarni2565 11 місяців тому +3

    Clumzy way to solve

  • @teckpass-pn2nu
    @teckpass-pn2nu 10 місяців тому +2

    Convert 148 into the binary number. U will find three 1. That's the answer.

  • @BLAMO1973
    @BLAMO1973 11 місяців тому +18

    This is a trivial problem for anyone used to converting from decimal to binary.
    148 = 10010100 = 128+16+4 = 2^7+2^4+2^2

    • @Change_Verification
      @Change_Verification 10 місяців тому

      If in the original example we replace 148 with 144=10010000=(2^6+2^6+2^4 or 2^7+2^3+2^3) this method will not work.

    • @oahuhawaii2141
      @oahuhawaii2141 10 місяців тому

      Since you didn't indicate that you meant "10010100" to be binary, your answer is wrong because 148 ≠ 10,010,100.
      Also, the problem asked for the values of a, b, and c, which you didn't provide; you didn't answer the question.
      This is like having a task to get 3 items from the store, so you go there to fetch them from the shelves, but go home, leaving them in the cart.

    • @oahuhawaii2141
      @oahuhawaii2141 10 місяців тому

      ​@@Change_Verification: FYI, 144 ≠ 10,010,000 . You're being sloppy with your work.
      Also, using your example of 144, once it's decomposed to the sum of two powers of 2, namely 2^7 and 2^4, we still need the sum of three powers of 2. That's accomplished by splitting either term into the sum of two halves; i.e., substitute 2^7 with 2^6 + 2^6, or 2^4 with 2^3 + 2^3 in 144 = 2^7 + 2^4 . This is just an added step after converting to binary.

    • @Change_Verification
      @Change_Verification 10 місяців тому

      @@oahuhawaii2141 144 ≠ 10,010,000 ? Indeed! 😂😂😂 "This is just an added step" - this essentially means another solution that differs from the original one.

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      @Change_Verification: You also can get 144 with 128 + 32 - 16 using exponents of 7, 5, and 4+i*π*(1+2*k)/ln(2) with k being any integer. The original problem doesn't have a restriction on the powers, so complex numbers are allowed.

  • @batmunkhenkhbaatar9061
    @batmunkhenkhbaatar9061 11 місяців тому +2

    Amazing

  • @Алексей-ц7ь8б
    @Алексей-ц7ь8б 11 місяців тому +3

    Можно просто выписать степени числа 2. Это 2, 4, 8, 16, 32, 64, 128. Очевидно, что одно из чисел это 128, не хватает 20, а это 16 +4. Т.е. 7, 4 2.

  • @piyushbhaipatel6810
    @piyushbhaipatel6810 8 місяців тому +1

    Very nice

  • @cristcaminoa1
    @cristcaminoa1 11 місяців тому +2

    Me gusta lo concreta y ordenada que es tu resolución. Saludos desde Córdoba en Argentina.

  • @raulbotero982
    @raulbotero982 10 місяців тому +2

    Excelente videom

  • @RoyGvibMunuz
    @RoyGvibMunuz 8 місяців тому +1

    Its a simple one but you make it complicated. :) :) :)

  • @levskomorovsky1762
    @levskomorovsky1762 11 місяців тому +2

    It is easier to identify the power of two closest to the number 148. 128 = 2^7, In the remaining number 20, select the nearest power of two. 16 = 2^4 Remains 4 = 2^2

    • @waggyquack974
      @waggyquack974 11 місяців тому +2

      That's how I used to teach my electronics students to convert decimal to binary.

  • @bair4007
    @bair4007 11 місяців тому +3

    You need the condition that a, b, and c are integers.

  • @MrPaulc222
    @MrPaulc222 8 місяців тому +1

    First: an assumption that they are all integers.
    Numbers that can be constituents: 1, 2, 4, 8, 16, 32, 64, 128
    1 can only be used if there are two of them, because the answer is even. 148-2=146 which isn't an integer power of 2, so rule out 1. Therefore, exponents a,b,and c are not 0.
    What remains is to find a combination of the numbers I've written to make 148, and repetition is allowed if needed.
    4, 16, and 128, works, though there may be other combinations.
    Exponents a, b, and c can be 2,4,and 7 in any order.
    Although this looks long winded, I actually did it in my head much more quickly.

  • @KCTC1158
    @KCTC1158 11 місяців тому +2

    बहुत बढ़िया

  • @NithyaGhumare
    @NithyaGhumare 11 місяців тому +2

    Perfect for students

  • @KipIngram
    @KipIngram 9 місяців тому +2

    Well, 148 = 128 + 16 + 4 = 2^7 + 2^4 + 2^2.
    I expect guys in my profession (digital circuit desing) will eat this question for lunch - we know our powers of two up one side and down the other. The thing to note here is that if you just write 148 in binary, then only the bits corresponding to those three powers will be set.
    Now, if you'd instead used 149, or really any number that's not the sum of three powers of two, then it becomes a MATH problem, and it would be much harder. But when it's a simple case like this we just sort of "see it" without thinking much at all.

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      I first did the problem by converting to hexadecimal and then to binary:
      148 = 94h = 10010100b = 2⁷ + 2⁴ + 2²
      The 3 exponents can be mapped to (a, b, c) in 6 ways.
      And just for fun, I got complex numbers with 148 + 1 - 1 = 148, which requires taking the log base 2 of the 3 terms on the LHS:
      a = ln(148)/ln(2)
      b = 0
      c = i*π*(1+2*k)/ln(2), k any integer
      Those EE courses are fun!

  • @WaldenioMenezes
    @WaldenioMenezes 7 місяців тому

    Além do exercício gostei da sua voz!❤

  • @apmg4100
    @apmg4100 Рік тому +3

    Pensei nas potências de 2 e rapidamente combinei os números que davam a resposta. Quando são inteiros, é certeiro.

  • @oahuhawaii2141
    @oahuhawaii2141 5 місяців тому +2

    2^a + 2^b + 2^c = 148
    Convert 148 to binary: 10010100b = 2⁷ + 2⁴ + 2² .
    One solution is: a = 7, b = 4, c = 2 .
    Note that there are 6 permutations to map 7, 4, and 2 to a, b, and c, but I chose a ≥ b ≥ c.

  • @asimkumerdas3497
    @asimkumerdas3497 8 місяців тому +1

    HOW MUCH TIME WILL BE ALLOTED FOR A SUMS ?

  • @jesusbedoya52
    @jesusbedoya52 Рік тому +2

    FANTASTIC!!!

  • @JoeGoogol
    @JoeGoogol 5 місяців тому +1

    148 in binary is 10010100. Reading from the right, the digits are: 0×2^0 + 0x2^1 + 1×2^2 + ...
    The 1s are in columns: 2, 4 and 7.

  • @vladimirhome8051
    @vladimirhome8051 5 місяців тому +1

    Just devide both sides :4. 2^(a-2)+2^(b-2)+2^(c-2)=37. For ex, 2^(c-2)=1, 2^(a-2)=32 or 2^(a-2)=16. It is solved.

  • @tailerpassetabazo4970
    @tailerpassetabazo4970 11 місяців тому +3

    Problemita de 1 de secundaria diria yo , solo usando lógica llegas al relsultado y matematicamente sigue siendo fácil , no se porque le ponen math olympiad
    Aunque tampoco quiero ser hater asi que si solo pusiera ecuación exponencial me hubiera encantado verlo, aunque pudo ser para llamar más la atención que si lo logró hacer, pues me molesto que pusiera math olympiad pero bueno , almenos hizo cada procedimiento para los nuevos 😃

    • @tailerpassetabazo4970
      @tailerpassetabazo4970 11 місяців тому +2

      Dije primero de secundaria por que yo estoy en primero quise decir primaria pero seria muy arrogante 😁

    • @tailerpassetabazo4970
      @tailerpassetabazo4970 11 місяців тому +2

      Le di me gusta pero no suscribi solo por que no sé inglés intermedio y no me gustaria tener videos solo en inglés el único canal que me hizo hacer estudiar inglés fue "Prime Newtons"

  • @yencuek3649
    @yencuek3649 6 місяців тому +1

    This is quite fun

  • @panchnamanews
    @panchnamanews 6 місяців тому +1

    Sum of 4+16+128=148
    2 power 2+2power4+2power7=148
    There for a=2, b=4,c=7

  • @grug723
    @grug723 10 місяців тому +2

    hit nd trial krlete madam ji

  • @hwwang5165
    @hwwang5165 11 місяців тому +2

    同除2次2後右邊出現單數 可以推測此時左邊有一項變成1 再同減1 繼續除2 除了2次後右邊又出現單數 代表左邊又出現1 可以推出a為2 b為4 再推c就不難了 用心算就解開了

  • @huckfinn301
    @huckfinn301 10 місяців тому +8

    The sum of all three exponents must equal 148.
    Since 2^8=256, we know the highest exponent can only be to the 7th power.
    2^1=2
    2^2=4
    2^3=8
    2^4=16
    2^5=32
    2^6=64
    2^7=124
    Pick the three above exponents that sum to 148
    2^2=4
    2^4=16
    2^7=124
    =148
    2,4,7

  • @Maheshkumar-cw6un
    @Maheshkumar-cw6un Рік тому +2

    Perfect teaching

  • @oahuhawaii2141
    @oahuhawaii2141 10 місяців тому +1

    2^a + 2^b + 2^c = 148 , and let a >= b >= c >= 0 (all integers).
    I know the powers of 2 (up to 2^24), so I'll take out the biggest chunks first.
    I see 2^7 = 128 is just below 148 .
    So, let a = 7 , and simplify:
    128 + 2^b + 2^c = 148
    2^b + 2^c = 20
    I see 2^4 = 16 is just below 20 .
    So, let b = 4 , and simplify:
    16 + 2^c = 20
    2^c = 4
    I know 2^2 = 4, so c = 2 .
    Alternatively, we can convert to binary:
    148/2 = 74 r 0
    74/2 = 37 r 0
    37/2 = 18 r 1
    18/2 = 9 r 0
    9/2 = 4 r 1
    4/2 = 2 r 0
    2/2 = 1 r 0
    Thus, 148 = 10010100b = 2^7 + 2^4 + 2^2 .
    Therefore, a = 7 , b = 4 , and c = 2 .
    Another solution:
    LHS is sum of powers of 2, and RHS has factors of 2, so factor them out.
    148 = 4 * 37 = 2^2 * 37
    Let a = 2 + a' , b = 2 + b' , and c = 2 + c' .
    2^2 * (2^a' + 2^b' + 2^c') = 2^2 * 37
    2^a' + 2^b' + 2^c' = 37
    Let c' = 0 . Thus, c = 2 .
    2^a' + 2^b' + 2^0 = 37
    2^a' + 2^b' + 1 = 37
    2^a' + 2^b' = 36
    LHS is sum of powers of 2, and RHS has factors of 2, so factor them out.
    36 = 4 * 9 = 2^2 * 9
    Let a' = 2 + a" , and b' = 2 + b" .
    2^2 * (2^a" + 2^b") = 2^2 * 9
    2^a" + 2^b" = 9
    Let b" = 0 . Thus, b = 2 + b' = 2 + (2 + b") = 4 .
    2^a" + 2^0 = 9
    2^a" + 1 = 9
    2^a" = 8
    2^a" = 2^3
    a" = 3 . Thus, a = 2 + a' = 2 + (2 + a") = 7 .
    Therefore, a = 7 , b = 4 , and c = 2 .

  • @aymanghaibeh8589
    @aymanghaibeh8589 8 місяців тому +1

    2, 4, 7
    148 = 128 + 16 + 4
    Solved it instantly

  • @ksw591
    @ksw591 8 місяців тому +1

    At the beginning, declaration of Integer a, b, and c?

  • @aruntiwari5714
    @aruntiwari5714 Рік тому +2

    Nice to learn these maths

  • @KevinInPhoenix
    @KevinInPhoenix 11 місяців тому +2

    Mathematicians sure do like to play with themselves. Filling two pages with equations, when all you have to do is decompose 148 into its three largest powers of 2 (128, 16, & 4) and then find the exponents for 2.

  • @thetjdman
    @thetjdman 8 місяців тому +1

    I started by taking the biggest exponent out first. That being 128 or 2^7. That leaves 20. I took out 16, or 2^4 and 4 or 2^2. My answer is 2^2+2^4+3^7=148

  • @rki7068
    @rki7068 8 місяців тому +1

    I used binary (base 2) combinations to get 7, 4, 2

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 2 місяці тому +1

    p = (2^a)+(2^b)+(2^c)=148;
    p =2²×37
    p/2² = 37
    p/2² = 36+1
    p/2² = 32+4+1
    p/2² = 2⁵+2²+2⁰
    p = 2⁷+2⁴+2²
    => both have the same base, so we'll look to the power exponential.
    easy find:
    {a;b;c} = {7;4;2} (the awnser)

    • @ConradoPeter-hl5ij
      @ConradoPeter-hl5ij 2 місяці тому +1

      If,
      {a;b;c} ⊂ N
      Then,
      {a;b;c} = {7;4;2} is the awnser.

  • @Pankajshahu-z7z
    @Pankajshahu-z7z 7 місяців тому +2

    Why are you making simple mathematics so complex?

  • @Al-Capone
    @Al-Capone 11 місяців тому +2

    Выписать степени 2 от 0 до 7 и подобрать те,которые в сумме дадут 148 это и будут целые корни

  • @subbaraochiravuri3772
    @subbaraochiravuri3772 7 місяців тому +1

    This problem is having one equation and three variables. We have therefore, 2 degrees of freedom. That is fix a and b and solve for c.

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      There are an infinite number of solutions because there's no restriction on using integers only. I can rewrite the problem as finding the sum of any 3 numbers to be 148: a' + b' + c' = 148 . I can chose 2 random values for a' and b' , and then compute c' as c' = 148 - a' - b' . This has an infinite number of solutions. Then, I can cast any such solution to the original problem by taking the log base 2 of a' , b' , and c' to get a, b, and c, as long as a', b', and c' aren't 0. Note that a negative or complex value will lead to complex numbers. [Remember that any complex value can be converted to r*e^(i*θ) form, and it's easy to get the log base 2 of that, even if it gets messy.]
      For fun, let's use a = e and b = π for 2 of the 3 terms to sum up to 148 . We have:
      2^e + 2^π + 2^c = 148
      2^c = 148 - 2^e - 2^π
      c = ln(148 - 2^e - 2^π)/ln(2) ≈ 7.0508731651623102433373853534896 .
      Thus, a = e , b = π , and c = ln(148 - 2^e - 2^π)/ln(2) ≈ 7.0508731651623102433373853534896 .
      We can have more fun with 148 = 128 + 32 - 12 = 2^7 + 2^5 + 2^c , with a = 7 and b = 5 .
      2^c = -12 = 12*(-1) = 12*e^(i*π*(1+2*k)) , k any integer
      c = ln[12*e^(i*π*(1+2*k))]/ln(2)
      c = ln(12)/ln(2) + i*π*(1+2*k)/ln(2)
      c = 3 + ln(1.5)/ln(2) + i*π*(1+2*k)/ln(2) , k any integer
      We can go wild with complex numbers, too.
      a' = -1+i = √2*e^(i*π/4*(8*p+3)) , p any integer
      b' = -1-i = √2*e^(i*π/4*(8*q-3)) , q any integer
      c' = 150
      Thus, we have:
      a = 1/2 + i*π/4*(8*p+3)/ln(2) , p any integer
      b = 1/2 + i*π/4*(8*q-3)/ln(2) , q any integer
      c = ln(150)/ln(2)