A Fascinating Radical Equation | An Algebra Challenge

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 14

  • @Shobhamaths
    @Shobhamaths Місяць тому +1

    Cubing on both sides
    x^3=(1-2x-9x^2) /(x^2-2x-9)
    Let t=2x+9
    x=(t-9) /2, substituting
    a=t-9
    a^5-4a^4-36a^3+16a^2+144a-32=0
    a=2;
    then x=1

  • @tunneloflight
    @tunneloflight Місяць тому

    First two (of 5) roots: x = 1, x = -phi^2
    trinomial remaining to resolve = x^3 - (phi+2)*x^2+(4*phi-7)*x+(2-phi).
    resolve: (2-phi), 2+root(3), 2-root(3)

    • @tunneloflight
      @tunneloflight Місяць тому

      So full solution: x = 1, -phi-1, 2-phi, 2+root(3), 2-root(3).
      in ~ numbers: x = 1, -2.618, 0.31966, 3.73205, 0.26795
      ordered: 3.73205, 1, 0.31966, 0.26795, -2.618

  • @kassuskassus6263
    @kassuskassus6263 Місяць тому +1

    Five real solutions x=1; x=(-3+or-sqrt5)/2; x=2+or-sqrt3

  • @paulortega5317
    @paulortega5317 Місяць тому

    First comment. You can reduce down first and avoid dealing with a quintic polynomial
    The initial equation can be expressed as:
    x³ = ((x - 1)² - 10x²)/((x - 1)² -10)
    x³(x - 1)² - 10) = (x - 1)² - 10x²
    x³(x - 1)² - 10x³ = (x - 1)² - 10x²
    x³(x - 1)² - (x - 1)^2 = 10x³ - 10x²
    (x - 1)²(x³ - 1) = 10x²(x - 1)
    (x - 1)(x³ - 1) = 10x²
    x⁴ - x³ - 10x² - x + 1 = 0
    Second comment. Any time you see a format like x⁴ + ax³ + bx² +ax + 1 = 0 you know you can use u = x + 1/x to simplify it. As you did. In this case a = -1 and b = -10

    • @rabotaakk-nw9nm
      @rabotaakk-nw9nm Місяць тому

      x=1 => x-1=0 !!! 😬 =>
      (x-1)²(x³-1)-10x²(x-1)=0
      (x-1)((x-1)(x³-1)-10x²)=0
      (x-1)(x⁴-x³-10x²-x+1)=0
      => x-1=0 => x1=1…………

  • @DhirajKumar-g
    @DhirajKumar-g Місяць тому

    Hey !can try this problem with at least two different methods , the program looks like -: x + 3x-y/(x²+y²) =3 and y -(x+3y)/(x²+y²). Solve for x and y

    • @Comedy_boy_30
      @Comedy_boy_30 Місяць тому

      I am also wondering with this equations to solve but can't .One method to solve this is the video made on it by the channel prime newton may be you know about this channel. I give this equations to my teacher but he could not able to solve this problem😢😢😢 so bad. Plz share this to different persons who have wide knowledge about algebra

    • @DhirajKumar-g
      @DhirajKumar-g Місяць тому

      I know shashwat 😂

  • @RashmiRay-c1y
    @RashmiRay-c1y Місяць тому +2

    Cubing both sides, we get x^5-1 -2x^4+2x-9x^3+9x^2=0 > (x-1)[x^4-x^3-10x^2-x+1]=0. So, x=1 or x^4-x^3-10x^2-x+1=0 > x^2+1/x^2 -(x+1/x) = 10 > (x+1/x)^2 - (x+1/x) = 12 > x+1/x= -3,4 > x^2+3x+1=0 or x^2-4x+1=0. Thus the valid solutions are, x=1,1/2(√5-3), -1/2(√5+3), 2+√3, 2-√3.

  • @walterwen2975
    @walterwen2975 Місяць тому

    An Algebra Challenge: x = ³√[(1 - 2x - 9x²)/(x² - 2x - 9)], x ϵ R; x =?
    x ≠ 0; x³(x² - 2x - 9) = 1 - 2x - 9x², x⁵ - 2x⁴ - 9x³ = 1 - 2x - 9x²
    x⁵ - 2x⁴ - 9x³ + 9x² + 2x - 1 = 0, (x⁵ - 2x⁴ + x³) - (10x³ - 10x²) - x² + 2x - 1 = 0
    x³(x² - 2x + 1) - 10x²(x - 1) - (x² - 2x + 1) = x³(x - 1)² - 10x²(x - 1) - (x - 1)² = 0
    (x - 1)[x³(x - 1) - 10x² - (x - 1)] = (x - 1)(x⁴ - x³ - 10x² - x + 1)
    x⁴ - x³ - 10x² - x + 1 = (x⁴ + 2x² + 1) - x³ - x - 12x²
    = (x² + 1)² - x(x² + 1) + (3x)(- 4x) = (x² + 1 - 4x)(x² + 1 + 3x)
    x⁵ - 2x⁴ - 9x³ + 9x² + 2x - 1 = (x - 1)(x² - 4x + 1)(x² + 3x + 1) = 0
    x - 1 = 0, x² - 4x + 1 = 0 or x² + 3x + 1 = 0
    x = 1, x² - 4x + 4 = (x - 2)² = (√3)², x = 2 ± √3, or x = (- 3 ± √5)/2
    Answer check:
    x = ³√[(1 - 2x - 9x²)/(x² - 2x - 9)]; Convert to the following Quintic Equation
    x⁵ - 2x⁴ - 9x³ + 9x² + 2x - 1 = (x - 1)(x² - 4x + 1)(x² + 3x + 1)
    x = 1: ³√[(1 - 2x - 9x²)/(x² - 2x - 9)] = ³√[(1 - 2 - 9)/(1 - 2 - 9)] = 1 = x; Confirmed
    x = 2 ± √3: x² - 4x + 1 = 0; (x - 1)(x² - 4x + 1)(x² + 3x + 1) = 0; Confirmed
    x = (- 3 ± √5)/2: x² + 3x + 1 = 0; (x - 1)(x² - 4x + 1)(x² + 3x + 1) = 0; Confirmed
    Final answer:
    x = 1, x = 2 + √3, x = 2 - √3, x = (- 3 + √5)/2 or x = (- 3 - √5)/2

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    (x^3 )➖ (1)2x ➖ 9x^3/(x^2)^2➖( 2x )^3➖ 9 ={x^9 ➖ 1}2x ➖ 9x^2/{x^4 ➖ 4x^2} ➖ 9={x^8*2x} ➖ 9x^2/4x^2 ➖ (9)^2= 2x^8 ➖ (9x^2)^2/4x^2 ➖ (9)^2={2x^8 ➖ 81x^4}/{4x^2 ➖ 81}=79x^4/87x^2 79^1x^2^2/3^29x^2 1^1x^1^1/3^29^1x^2/3^1^1x^2 3x^2 (x ➖ 3x+2).

  • @Quest3669
    @Quest3669 Місяць тому +2

    X= 1; 2+- √3; (-3+-√5)/2