A Nice Radical Equation

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 20

  • @octobermathematics
    @octobermathematics 2 місяці тому

    Thankyou for sharing.

  • @surendrakverma555
    @surendrakverma555 2 місяці тому

    Thanks 🙏🙏🙏🙏

  • @aymantimjicht3653
    @aymantimjicht3653 3 місяці тому

    Thank you its usefull.

  • @StaR-uw3dc
    @StaR-uw3dc 3 місяці тому

    Nice solution.
    Other approach to the equation x^2-3=sqrt(x+3):
    After substitution a=3 we get x^2-a=sqrt(x+a).
    After squaring both sides we get x^4-2ax^2+a^2=x+a, i.e. a^2-(x^2+1)a+x^4-x=0 which is quadratic in a with delta=(2x^2+1)^2-x^4+4x=(2x+1)^2 and roots a1=(2x^2+1+2x+1)/2=x^2+x+1 and a2=(2x^2+1-2x-1)/2=x^2-x.
    After back substitution we get two quadratics in x: x^2+x+1=3 and x^2-x=3 i.e. x^2+x-2=0 and x^2-x-3=0 as presented in video.

  • @black_eagle
    @black_eagle 3 місяці тому

    I came up with my own method similar to your first method but for me it was clearer:
    After squaring the original eqn and combining terms I got x^4 - 6x^2 - x + 6 = 0.
    I assumed this can be written in the form (x^2 - a)^2 - (x - b)^2 (difference of squares).
    I multiplied these out and solved for a and b, which gives a = 5/2, b = -1/2.
    The equation then factors into [(x^2 - 5/2) - (x+1/2)] [(x^2 - 5/2) + (x + 1/2)] = (x^2 - x - 3) (x^2 + x - 2).
    I factored these terms by the quadratic eqn and simple factorization to get the solutions.
    Nice problem.

  • @norbertduchting6217
    @norbertduchting6217 3 місяці тому

    The x = 1 solution of the quartic can be seen much easier than the x = -2 solution ( without rational root theorem).

  • @michaelschmitt2427
    @michaelschmitt2427 3 місяці тому

    Nice👍

  • @DonRedmond-jk6hj
    @DonRedmond-jk6hj 3 місяці тому +2

    Synthetic division saves you the problem of juggling the coefficients.

    • @SyberMath
      @SyberMath 3 місяці тому

      Yes but juggling the coefficients is more fun! 🤪

  • @Mohammad1Ahmad
    @Mohammad1Ahmad 3 місяці тому

    Bravo, this is an equation that is difficult to find even one way to solve.
    Thanks to your method, I found the solution to the following equation: x^2-13=(x+13)^1/2

  • @user-SK22-calc
    @user-SK22-calc 3 місяці тому

    I have found a method which although incomplete I find very nice.
    By moving 3 to the right hand side:
    x^2=3+sqrt(3+x)
    So:
    x=sqrt(3+sqrt(3+x))
    By looking at this we notice the RHS looks like a composition of a function f with itself.
    Define:
    f(x)=sqrt(3+x)
    RHS=f(f(x))
    LHS=x
    Therefore:
    f(f(x))=x
    f(x)=f^-1(x)
    And we know a function and its inverse will meet at y=x:
    So:
    f^-1(x)=x
    By inspection of the original eq: f^-1(x)=x^2-3
    So:
    x^2-3=x
    We get one sol with the quadratic formula.
    I don't know where the second sol was lost.

  • @KipIngram
    @KipIngram 3 місяці тому

    x^2 - 3 = sqrt(x+3)
    x^4 - 6*x^2 + 9 = x + 3
    x^4 - 6*x^2 - x + 6 = 0
    (x-1)*(x+2)*(x^2 - x - 3) = 0
    x = 1, x = -2, x=0.5+sqrt(13)/2, x=0.5-sqrt(13)/2.

  • @Quest3669
    @Quest3669 3 місяці тому

    Pardon but x-1 will be the 1st factor not x-2

    • @Nikioko
      @Nikioko 3 місяці тому

      x - 1 and x + 2 are factors.