One of the most beautiful calculus results you'll see! Solved using the Laplace transform

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 52

  • @zunaidparker
    @zunaidparker 2 роки тому +29

    Beautiful interplay of the two techniques! This result was marvelous.

    • @maths_505
      @maths_505  2 роки тому +3

      Indeed
      So far I haven't seen an integral that gives a similar result

  • @Gamberizzati
    @Gamberizzati 2 роки тому +23

    nice. however there is an elementary solution in one line using the residue theorem applied to the function Re(e^(iz)/(z^2+1)).

    • @maths_505
      @maths_505  2 роки тому +14

      Yes indeed but I just love using real methods wherever possible

    • @zlatanbrekke6538
      @zlatanbrekke6538 10 місяців тому

      The residue Theorem is so powerful in this case. I only had to look at the integral and calculate it in my head, I didn’t have to write a single line down. I could SEE what the answer would be. Such a beautiful, powerful tool.

  • @adityabharadwaj4114
    @adityabharadwaj4114 Рік тому +3

    Very nice method! Really liked it. Thank you🙏🙏

  • @renesperb
    @renesperb 2 роки тому +3

    Another aprroach is to use Fourier -transforms:Consider the integral of Exp[i x y]/(1+x^2) ,which corresponds to √(2*π) * Fourier transform of 1/(x^2+1).
    The FT of 1/(x^2+1) is √(π/2)*Exp[- | y |]. For y=1 you get π/e . To see that the Fourier transform of 1/(x^2+1) is given by the term written before , one can just use the inverse FT of Exp[- | y |] which is easy to calculate.

  • @techanalyst23
    @techanalyst23 2 роки тому +3

    Absolutely gorgeous one ❤️‍🔥

  • @cytos
    @cytos Місяць тому

    Using the famous engineering equation cosx=1, we can transform this integral into int(-inf, inf) 1/(x^2 + 1) dx, which is simply the arctan integral evaluated from -inf to inf, giving us pi. A truly beautiful result, round of applause

  • @helker999
    @helker999 Рік тому

    such an underrrated math channel

  • @MilkoAtchev
    @MilkoAtchev 2 роки тому +2

    Wow! Great result and techniques for solving! Thank you👍

  • @wagsman9999
    @wagsman9999 Рік тому

    wow... very nice, stunning result

  • @renesperb
    @renesperb 2 роки тому +1

    The technique used is by no means simple.
    I would assume that someone who is able to do that also knows residue theory .Use that you may take the real part of Exp[ i x] and use that
    1/(x^2+1)= 1/2 i (1/(x-i)-1/(x+ i) ,which leads to π * i *(-i *Exp[-1] = π/e

    • @maths_505
      @maths_505  2 роки тому +4

      Indeed but I just love using real techniques whenever possible

  • @hanspetermarro4188
    @hanspetermarro4188 Рік тому +2

    Nice video along a touristic route of mathematical techniques. Contour integration in the complex plane makes this a one-liner.

  •  Рік тому

    ❤❤❤❤❤❤
    Beautiful interplay of techniques!!

  • @social6332
    @social6332 2 роки тому

    beautiful solution.

  • @roderictaylor
    @roderictaylor 2 місяці тому

    Very nice.

  • @gianlucastrong3496
    @gianlucastrong3496 2 роки тому

    Thank you very much!

  • @NotreDameCollege-ju6fl
    @NotreDameCollege-ju6fl 3 місяці тому

    which software you use to write like these?

  • @kartikeyasaxena3465
    @kartikeyasaxena3465 2 роки тому

    Love from India 👍

  • @bmrm2004
    @bmrm2004 Рік тому +1

    Beaufiful result. Can also be accomplished using complex analysis.

  • @damrgee8279
    @damrgee8279 Рік тому +2

    Can somebody tell me how all of this is used in the real world

  • @thomasblackwell9507
    @thomasblackwell9507 2 роки тому +1

    Beautiful! This is a combination of the Feynman Technique and the Laplace Transform right?

    • @maths_505
      @maths_505  2 роки тому +7

      Not exactly
      The feynman technique is based on differentiating a parameter
      The laplace transform is more of an integration w.r.t a parameter along with the introduction of an exponential term involving that parameter

    • @thomasblackwell9507
      @thomasblackwell9507 2 роки тому

      @@maths_505 --Thank you, sir.

    • @holyshit922
      @holyshit922 Рік тому

      @@maths_505 is special case of integration with respect to a parameter

  • @abouzarmansouri
    @abouzarmansouri Рік тому

    Why should I use such a long method? There are much shorter methods

  • @jasonlin5884
    @jasonlin5884 Рік тому +1

    But what if replace the cos(x) with sin(x) ?
    It surely converge (seems converge to 0.64...). , but I can't work out. I get it equal to infnity*0

    • @blblblblblbl7505
      @blblblblblbl7505 4 місяці тому

      It gives 0 because the function is odd

    • @jasonlin5884
      @jasonlin5884 4 місяці тому

      @@blblblblblbl7505 sorry !i forgot to rewrite the integrated boundary from 0 to plus infinity .
      It is converged. Converge to 0.6xxxxx

  • @kennethwilliams4169
    @kennethwilliams4169 2 роки тому

    Nice!

  • @mohammadmohammad-qi2os
    @mohammadmohammad-qi2os 2 роки тому

    awesome

  • @epsilia3611
    @epsilia3611 2 роки тому +1

    Let's say I integrate from -infty to +infty the function x, wrt x. Can I use the fact that x is an odd function in order to say that the I definite integral is zero?
    The same way here, how do we know the parity on an indefinite integral applies ? Because the function you're integrating is bounded maybe? In that case why is it a valid argument?

    • @maths_505
      @maths_505  2 роки тому

      You can integrate x from -a to +a and you'll get zero. Taking the limit to infinity of something that's zero is zero so yes the argument is valid in this case
      Nd yes part of the reason why the parity applies is that the function we're integrating is bounded. However that's part of the bigger picture where we need boundedness to actually get a solution that's valid.

    • @epsilia3611
      @epsilia3611 2 роки тому

      No need to delete my response really, it's okay if you don't have the response to my question...

    • @maths_505
      @maths_505  2 роки тому

      I haven't deleted it
      I responded an hour ago

    • @epsilia3611
      @epsilia3611 2 роки тому

      @@maths_505 I was talking about the 3 other comments that were deleted in a row ...

    • @maths_505
      @maths_505  2 роки тому

      Deleted?
      I haven't deleted anything
      Perhaps they're being held in review
      Let me check

  • @giack6235
    @giack6235 Рік тому +2

    I'm not very sure on 0:30 passage: function is even ok, but doubling the integral and behalfing the integration domain in case of integrand even function works only when extremes of integration are finite. If extremes are not finite we don't know how each extreme approaches its infinity (+inf and -inf respectively) and so we don't necessarily have a symmetric integration area. I think the passage is true only in the principal value of the integral sense.

  • @aymaneoulahyane6803
    @aymaneoulahyane6803 9 місяців тому

    ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

  • @juliogarcia1152
    @juliogarcia1152 Рік тому

    Are U kidding us?

  • @shakaibsafvi97
    @shakaibsafvi97 Рік тому

    Hi
    You skipped too many core concept steps
    :(