Proof of the Convolution Theorem

Поділитися
Вставка
  • Опубліковано 27 гру 2024

КОМЕНТАРІ • 84

  • @munashekaks7585
    @munashekaks7585 7 років тому +96

    this guy is a genius.we spent more than two weeks in lectures studying laplaces but i couldnt understand anything...the moment i watched videos from this guy hahahaha i bet im now a genius..lol...thanks lots

    • @blackpenredpen
      @blackpenredpen  7 років тому +7

      Munashe Kaks great thanks

    • @ingoclever
      @ingoclever 5 років тому

      So true !

    • @univuniveral9713
      @univuniveral9713 5 років тому +1

      I know, right? The same genius brain brain that would have realized enlightenment if he had chosen a monastic path is being used to realise mathematical equations. He is also a goo teacher. I just subscribed, maybe he has more courses coming up.

    • @aashsyed1277
      @aashsyed1277 2 роки тому

      @@univuniveral9713 Brain brain u wrote 2 times

  • @novanecros9145
    @novanecros9145 5 років тому +3

    I have been trying to prove this theorem myself for about a month now because I could honestly not find proof anywhere and just seeing this video in my recommended made me smile so widely I already smashed that subscribe button. I'll be watching your videos from now on my dude. :D

  • @AakashSingh-ew2kz
    @AakashSingh-ew2kz 8 місяців тому +2

    Such an elegant proof of Convolution theorem using the unit step function.✨️

  • @HeraldoS2
    @HeraldoS2 7 років тому +5

    Man, what a huge video... Great work! But I found it a lot simpler going "backwards", using the subtitution theorem for multivariable integration and changing the integrating region from (R+)^2 to {(x,y) | 0

  • @brooax935
    @brooax935 4 роки тому

    probably the best channel to understand laplace thank u sir.

  • @gerardogutierrez4911
    @gerardogutierrez4911 7 років тому +17

    please do more differential equations. I took that class and learned a lot in a small amount of time, and now its all gone. we spent like two weeks on all of laplace, convolution, dirac's delta function, and a whole lot of stuff that required much more than two weeks to get into.

    • @blackpenredpen
      @blackpenredpen  7 років тому +3

      Jerry Gutierrez will do!

    • @gerardogutierrez4911
      @gerardogutierrez4911 7 років тому

      Also, I finished watching your video, and I love the explanation. I was always catching up in my differential eq's class and never fully understood why the teacher did what she did, and after watching this video, I feel like the laplace of the convolution, actually makes sense, and like you, I can appreciate how something so nasty like laplace and convolution combine to make something succinct, and pretty neat to look at and think about.

  • @nomvuseleloh
    @nomvuseleloh 7 років тому +6

    I found it, Convolution, Thank you... you are a blessing

  • @oybekkhakimjanov5944
    @oybekkhakimjanov5944 6 років тому +5

    Thank you! You've explained this so clearly.

  • @smrtfasizmu6161
    @smrtfasizmu6161 4 роки тому

    Omg blackpenredpen has a video about this. This guy covered so many topics

  • @Mathguy1729
    @Mathguy1729 4 місяці тому

    you can actually do u=t-v, du=dt after changing variables, and the integral will work very nicely without any unit step functions.

  • @MuhammadWaleed-f6n
    @MuhammadWaleed-f6n 7 місяців тому

    Wow. Genius. Keep producing content like this

  • @simdriver6797
    @simdriver6797 3 роки тому

    Wait... what happened to the e^(-st) (right after the "note")?

  • @abatipatrick2417
    @abatipatrick2417 2 роки тому

    May God bless you for all you do, bro

  • @kyang1305
    @kyang1305 6 років тому

    This is pure gold! This guy is a genius.

  • @alvaro5704
    @alvaro5704 3 роки тому

    Finally i understand it! Mindblowing video dude

  • @UETLHRCED15
    @UETLHRCED15 3 роки тому

    when u introduce at start u(tau-t) t acts as constant (t=a )
    at start but at end in u(t-tau) you choose tau as constant (tau=a) and t as variable ,please explain this ambiguity ???

  • @edwardalexis6801
    @edwardalexis6801 7 років тому +3

    Are you going to explain the deconvolution too?

  • @tanjimbinfaruk9145
    @tanjimbinfaruk9145 7 років тому +4

    Brilliant proof!

  • @satyamlal4461
    @satyamlal4461 6 років тому +1

    You are absolutely amazing!

  • @Alkis05
    @Alkis05 6 років тому +2

    11:03 Not all those functions are continuos in the interval. Namely the u(v-t) function is not. Which makes the whole thing not continuous at v=t. But I get it what you mean. The u function is not continuous, but can be integrated in that period

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 років тому +2

      Alkis05 It being continuous is not relevant for the integration. You can integrate step functions over any interval.

    • @Alkis05
      @Alkis05 6 років тому

      @@angelmendez-rivera351 That is exactly what said...
      I was correcting him in regard to him saying every function was continuous.

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 років тому

      Alkis05 I’m fairly certain he meant to say all of the functions are Riemann integrable.

  • @yarooborkowski5999
    @yarooborkowski5999 6 років тому

    Could You derive invers Laplace transform formula simply from Laplace transform?
    F(s)=integral(e^-st f(t))dt
    ->
    f(t)=1/2πi integral(e^st F(s))ds

  • @odongoabraham9464
    @odongoabraham9464 Рік тому

    What a beauty.. mathematics genius

  • @morganrogers196
    @morganrogers196 5 років тому +1

    Around 15.00, I'm confused because there were two e functions... and they merged into one function? The Laplace definition gives e^-vs(F(s)), so when you replace it back into the integral, wouldn't it give e^-s(t+v)?? Great videos! I love them and they've been so helpful for me!

    • @chasecupp5550
      @chasecupp5550 5 років тому +3

      Morgan Rogers I was confused at first too and was thinking the same thing as you. That e^-st is part of the definition of the Laplace transform and our f(t) from the definition is f(t-v)u(t-v) in this case. We didn’t actually do anything with the integral and just replaced it as a whole with the known result of the shift theorem, because if you wrote out the formal definition for the Laplace Transform, substituting f(t-v)u(t-v) for f(t), it would be exactly that black integral.

  • @solomontadesse3443
    @solomontadesse3443 2 роки тому +1

    thanks mister you helps alot

  • @ny6u
    @ny6u 4 роки тому

    convoluton in the time
    domain is equal to multiplication in the frequency domain.

  • @patipateeke
    @patipateeke 3 роки тому

    Thank you for the excellent videos which taught me a great deal!! Your work is amazing and helps many people around the world to understand math better! I have a question about the converse of this theorem: does a multiplication in the t-domain correspond to a convolution in the s-domain? I think that for a Fourier transform, also the converse is true, but I'm not so sure whether this is true for the Laplace transform...

  • @JordHaj
    @JordHaj 5 років тому +2

    2:55 the function graph looks like end brace you draw (using Laplace transform you should put input in braces)
    P.s. yea my English is very bad

  • @SuHAibLOL
    @SuHAibLOL 7 років тому +1

    Great video once again man

  • @thanveerahamed506
    @thanveerahamed506 7 років тому +3

    Thank you so much bro!

  • @UETLHRCED15
    @UETLHRCED15 3 роки тому

    1-u(tau-t)=u(t-tau) are both equal???

  • @alvisarker9016
    @alvisarker9016 Рік тому

    Loved it ❤

  • @utkarshjain861
    @utkarshjain861 День тому

    Can anyone explain me what is convolution?

  • @TawpeeBoyshuck
    @TawpeeBoyshuck 4 роки тому +2

    I'm a little confused here at 6:33. Isn't u(3-v) the mirror over the vertical axis of u(v-3)?

  • @K-Von
    @K-Von 6 років тому

    hello, do you have any videos of Fourier series?

  • @david-yt4oo
    @david-yt4oo 7 років тому +2

    9:00 those open intervals after you multiply by the unit step function (USF) throw me off because I think that the original area had that "slice" but when you multiply by the USF that "slice" is no lomger accounted for. maybe the way I said it was a bit confusing, but could you tell me why?
    (also, I think this is an ingenious way to approach the problem dude)

  • @userJfedYj45688
    @userJfedYj45688 Місяць тому

    very cool, thank you so much!!

  • @bhavyaputta5002
    @bhavyaputta5002 5 років тому

    Simply awesome😃

  • @ehmchris476
    @ehmchris476 9 місяців тому

    I don't know why, but this is still easier than algebra

  • @anuragmishra7395
    @anuragmishra7395 2 місяці тому

    From BlackNwhite to BlackNRed, Thanks😊

  • @univuniveral9713
    @univuniveral9713 5 років тому

    definition of convolution is integrating from minus to plus inf.

  • @ferlywahyu342
    @ferlywahyu342 4 роки тому

    But how to solve laplace (f'(x)/g(x))

  • @mimithehotdog7836
    @mimithehotdog7836 5 років тому

    What if there are constants a,b, c?
    L{ c f(t)*g(t) }?
    L{ a f(t)*b g(t) }?

  • @mariuszgawron4997
    @mariuszgawron4997 3 роки тому

    The Laplace Transform is itself an convolution. Moreover, convolution theorem works backward, it means that transform of convolution gives product of transforms!

  • @aneeshsrinivas9088
    @aneeshsrinivas9088 2 роки тому +1

    convolution is the worst notation ever,change my mind. as someone who is almost always typing math, * meaning multiplication should be standard,its been this way since like prealgebra, so this is like changing the meaning of + to be subtraction to me. this notation is the biggest middle finger for anyone who types math all the time and honestly i came up with a better notation for that, f(t)*_{(a,b)}g(t)=∫_a^b f(u)g(t-u)du.

  • @david-yt4oo
    @david-yt4oo 7 років тому +2

    10:56 nice, new trick

  • @mattetor6726
    @mattetor6726 4 роки тому

    Thank you!

  • @rollno4299
    @rollno4299 6 років тому

    Easy to understand.....
    🌹🌹🌹🌹🌹🌹🌹🌹

  • @gauravanand9478
    @gauravanand9478 6 років тому

    You are genius........ Really.....

  • @sujoy7471
    @sujoy7471 Рік тому

    ❤thanks sir

  • @centreville4048
    @centreville4048 5 років тому +1

    Amazing....

  • @owenpino6893
    @owenpino6893 6 років тому

    Is this part of calculus??

  • @smittyflufferson1299
    @smittyflufferson1299 3 роки тому +1

    Respect

  • @HomerBeeSimpson
    @HomerBeeSimpson 7 років тому +1

    Is -(u(v-t) - 1) = u(t-v)?

  • @ejercicioparatodos1886
    @ejercicioparatodos1886 3 роки тому

    Nice

  • @Eknoma
    @Eknoma 3 роки тому

    1:25 did my man just say Calculus 3? How the fuck is the american system so slow? Everything he has ever said is "Calculus 2" is taught in calc 1 or before here

  • @ahmadhalim260
    @ahmadhalim260 6 років тому

    Thank you

  • @andirijal9033
    @andirijal9033 5 років тому

    Are you M.Sc or Ph.D ?

  • @balajip5030
    @balajip5030 5 років тому

    Thanks

  • @mengzhenc3704
    @mengzhenc3704 6 років тому

    A-W-E-S-O-M-E!

  • @calvinjackson8110
    @calvinjackson8110 2 роки тому

    I cannot follow what he is doing. Will have to look at this video more than once. HE knows what he is doing, but I do not.

  • @yaleng4597
    @yaleng4597 2 роки тому +1

    我合理地懷疑1*1*1*1=t^3/3

    • @blackpenredpen
      @blackpenredpen  2 роки тому

      Just work it out. U don’t need to doubt 😆

  • @sukursukur3617
    @sukursukur3617 4 роки тому

    I expected you gave up

  • @andykwan6215
    @andykwan6215 4 роки тому

    超美

  • @AryanKumar-uu2jk
    @AryanKumar-uu2jk 2 роки тому

    2 plate momo laga do sir ji

  • @birdboat5647
    @birdboat5647 4 роки тому

    just make it phi bro

  • @brajeshjha20
    @brajeshjha20 5 років тому

    thanks