The overpowered Laplace technique for summing series.

Поділитися
Вставка
  • Опубліковано 15 січ 2025

КОМЕНТАРІ • 56

  • @timothywaters8249
    @timothywaters8249 Рік тому +7

    Mind blown... We used Laplace transforms to solve diff eqs... a lot. Using it like this opens your mind. I love pure maths more and more every day!

  • @MarcoMate87
    @MarcoMate87 Рік тому +1

    At 7:00, we must require both a and b to be > -1 to ensure absolute convergence for both integrals. In fact, take for example the first Laplace transform: multiplying e^(-nt) with e^(-at) under the integral sign, we have e^[-t(n+a)]. Remember that t > 0, so for the integral to converge for every natural n > 0 we need n+a > 0 for every natural n > 0. This is true if and only if a > -1. The same goes for b.

    • @Kycilak
      @Kycilak Рік тому +2

      Well... He assumed a,b to be nonnegative integers right at the start, didn't he?

  • @lorenzovittori7853
    @lorenzovittori7853 Рік тому +42

    Very cool but a and B cannot be the same

    • @GeoffryGifari
      @GeoffryGifari Рік тому +7

      even if a and b are both positive? r/b-a will blow up but Xᵃ - Xᵇ will go to zero. hmmmm
      its not apparent that a=b is invalid from the series alone

    • @aliinci1874
      @aliinci1874 Рік тому +17

      you can take a limit as b approaches a and notice it is the derivative of x^(a) with respect to a

    • @spoolster64
      @spoolster64 Рік тому

      @@aliinci1874 can confirm. Evaluating for b approaches a at a=0 r=1 you find the solution to the basel problem

    • @lorenzovittori7853
      @lorenzovittori7853 Рік тому +19

      @@GeoffryGifari of a=b u can't use partial fraction decomposition, not in the way Michael did

    • @jesusalej1
      @jesusalej1 Рік тому

      a=b is a special case of decomposition.

  • @mathematics_and_energetics
    @mathematics_and_energetics 2 місяці тому

    simply WOW! 🌺Thank you, dear Michael! 🙏🥳😎

  • @panagiotissismanis7387
    @panagiotissismanis7387 Рік тому +2

    Congratulations!! A very interesting point of view linking infinite series to integrals!! Keep up the great job, Mike!!...

  • @Qoow8e1deDgikQ9m3ZG
    @Qoow8e1deDgikQ9m3ZG 2 місяці тому +1

    the part let x=u^2 and x=u^3 and put together should be wrong, but the Laplace method is really genius

  • @whozz
    @whozz Рік тому +34

    The formula only works for a != b. Can we use limits to extend it for the a = b case?

    • @damyankorena
      @damyankorena Рік тому +13

      Computer scientist spotted!!!!!!!!!
      Also just take the original problem and consider the case a=b and you kind of just solve it from there

    • @DendrocnideMoroides
      @DendrocnideMoroides Рік тому +3

      Say a == b, not a = b.

  • @GrandMoffTarkinsTeaDispenser
    @GrandMoffTarkinsTeaDispenser Рік тому +7

    A bit of a basic question, but at 13:35, when performing the u substitution, why is it okay to write sqrt(u^2)=u instead of |u|? The way Michael did it in the video, after writing dx=2udu you're left with u^2 on the numerator while I would have thought the result to be |u|*u
    Thank you.

    • @michaelguenther7105
      @michaelguenther7105 Рік тому +8

      Both x and u are positive on the interval (0, 1).

    • @IoT_
      @IoT_ Рік тому +4

      The integration is within the interval which is more or equal to zero ,i.e. from 0 to 1

    • @GrandMoffTarkinsTeaDispenser
      @GrandMoffTarkinsTeaDispenser Рік тому +3

      @@michaelguenther7105 Of course! Thanks.

    • @GrandMoffTarkinsTeaDispenser
      @GrandMoffTarkinsTeaDispenser Рік тому +3

      @@IoT_ Thank you!

    • @khoozu7802
      @khoozu7802 Рік тому

      Actually if u=-sqrtx, x=1,u=-1,u can be negative
      However, u=sqrtx and u=-sqrtx are the same integral
      Let x=u^2 and -sqrtx=u
      dx=2udu
      x=0,u=0
      x=1,u=-1
      ∫_(0,1) sqrtx/(x-1)dx
      =∫_(0,-1) -u/(u^2-1)*2udu
      =∫_(-1,0) 2u^2/(u^2-1)du
      =∫_(0,1) 2u^2/(u^2-1)du
      Because it is an even function

  • @qschroed
    @qschroed Рік тому +1

    an interesting case analysis of the formula would be at r=1 a = 0 and b approaching 0 as a limit, the value of this should be the basel sum

  • @Lakedaimōn-h8j
    @Lakedaimōn-h8j Рік тому +3

    7:21
    Why are the sigma and integral interchangeable?

    • @GrandMoffTarkinsTeaDispenser
      @GrandMoffTarkinsTeaDispenser Рік тому

      There is a theorem about this which has to do with different types of convergence, I think when you have "absolute" convergence then it is okay to make the switch. Maybe someone can expand on my answer.

    • @xizar0rg
      @xizar0rg Рік тому +4

      The "Dominated Convergence Theorem". Basically says as long as your series is 'nicely behaved', you can swap the order. (*very* oversimplified explanation of 'nice' in this case is absolutely bounded and converges at every value of the summation index. don't use this explanation in your homework.)

  • @thatdude_93
    @thatdude_93 Рік тому

    you can't really use dominated convergence here, but monotone convergence will do since we're summing positive terms

  • @lori2364
    @lori2364 Рік тому

    A thing of beauty.

  • @franksaved3893
    @franksaved3893 Рік тому

    At the end the case r=0 works and gives 0 not because ln(1)=0, but because the limit of all that stuff is 0 for r->0

  • @GrandMoffTarkinsTeaDispenser

    Very satisfying method I agree.

  • @goodplacetostop2973
    @goodplacetostop2973 Рік тому +8

    18:45

  • @Patapom3
    @Patapom3 Рік тому

    Amazing!

  • @GeoffryGifari
    @GeoffryGifari Рік тому +10

    hmmm can the resulting integral be solved with contour integration?

  • @HerbertLandei
    @HerbertLandei Рік тому +2

    [Edit: This is wrong, but just in case someone else has the same brainfart] 14:06 is clearly wrong, it should be Integral u/(u²-1)du and Integral u/(u³-1)du.

    • @leif_p
      @leif_p Рік тому +1

      I think you forgot to multiply the dx terms.

    • @megauser8512
      @megauser8512 Рік тому +1

      No, it is right because of the du term.

    • @HerbertLandei
      @HerbertLandei Рік тому +1

      ​@@megauser8512 Sorry, you are right.

  • @koendos3
    @koendos3 Рік тому

    Sums are my favorites

  • @jbtechcon7434
    @jbtechcon7434 Рік тому

    0:54 Yeah, that's the problem with most of what you learn in school. It only works in school.

  • @cd-zw2tt
    @cd-zw2tt Рік тому

    region of convergence

  • @khoozu7802
    @khoozu7802 Рік тому

    The calculation in first example was wrong. U should integrate them separately because when x=u^2, u=sqrtx, x=1-, u=sqrt(1-), when x=u^3, u=cbrtx, x=1-, u=cbrt(1-)
    If u assumed x=1, u=sqrt1=1 and u=cbrt1=1, u will get wrong in final answer.

  • @hhlavacs
    @hhlavacs Рік тому

    Excellent video as always

  • @khoozu7802
    @khoozu7802 Рік тому

    13.36
    He said dx=2udu but he wrote du=2udu

  • @AmitBentabou
    @AmitBentabou Рік тому

    I dont feel comfortable in that change of variables.
    It feels like because of the limit nature of integrals, youre doing there two different infinite limits with the same variable taken at the same time, something that is not entirely rigorous. Can you explain why you are allowed to do that?

    • @randomlife7935
      @randomlife7935 Рік тому

      Since the original series is absolutely convergent, then any change of variables or order is valid.

    • @Kycilak
      @Kycilak Рік тому

      Well, you can tear the former integral into two, do the change of variable for each of them as Michael has done. The variables used in the change should probably differ as they result from different changes, but we can rename the variable we integrate over as we please. Then we would be left with the addition of the two integrals over the same integral, which can be joined again.
      Schematically:
      int_0^1 [ f(x) + g(x) ] dx = int_0^1 f(x) dx + int_0^1 g(x) dx = int_0^1 h(u) du + int_0^1 k(v) dv = int_0^1 h(u) du + int_0^1 k(u) du = int_0^1 [ h(u) + k(u) ] du
      The thing is we are able to do this because both of the changes of variables give the same interval (0, 1) "by coincidence".

  • @natanfreire8692
    @natanfreire8692 Рік тому

    This is interesting

  • @CM63_France
    @CM63_France Рік тому +3

    Hi,
    I used this technic, when I was about 20, to study this functional series : f(x)=1/(x+1)-1/(x+2)+1/(x+3)-... , and show that it had some thing to do with (pi x) / (sin pi x).
    Knowing, now, that that is equal to gamma(1-x) gamma(1+x), may be I could retrieve my function out of the gamma function. 🤔

    • @joansgf7515
      @joansgf7515 Рік тому

      By the same method on the video I reduced -sum_{n=1}^{infty} (-1)^n/(n+x) to int_0^infty e^-(1+x)t/(1+e^(-t)) dt. I'm not sure if I did it right and if it is how it is related to gamma(1-x)gamma(1+x).

    • @joansgf7515
      @joansgf7515 Рік тому

      When plotted on Desmos the integral is a really got approximation for gamma(1-x)gamma(1+x) in the interval (-1,-1/2]

  • @CTJ2619
    @CTJ2619 Рік тому

    Check it out !

  • @erfanmohagheghian707
    @erfanmohagheghian707 Рік тому

    This is not really overpowered when you can turn the summand into an integral as already shown by yourself.

  • @CTJ2619
    @CTJ2619 Рік тому

    This is a pet peeve of mine that I have written about before. When you say (a lot) “something like” it assumes you are putting an approximation to the answer rather than saying “the answer is or will be”

  • @naseramiri8332
    @naseramiri8332 Рік тому

    handsome