Proof of lim n approaches infinity (1+1/n)^n = e

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 38

  • @mohammedsaleh755
    @mohammedsaleh755 11 місяців тому +4

    Man thank you so much, even though im not studying any math course rn, yet this video was so easy to follow.

  • @fexiow
    @fexiow 2 роки тому +4

    Awesome, keep up the great work!

  • @syphaxjuba8420
    @syphaxjuba8420 Рік тому +5

    c'est faux puisque démontre le dérivée de ln (x)v=1/x on a besoin de cette limitr

  • @施沁懷-x7g
    @施沁懷-x7g Рік тому +2

    Thanks, this helps a lot.

  • @trantiendailuyenthidaihoc
    @trantiendailuyenthidaihoc Рік тому +2

    Thank you

  • @tanisyt
    @tanisyt Рік тому +2

    Thank you, mate,

  • @heeberman
    @heeberman Місяць тому

    Very interesting. It seems like we used e to show the very definition of e. Out of curiosity, is there another method to prove this without relying on taking the natural logarithm?

    • @Mathisyourfriend
      @Mathisyourfriend  Місяць тому

      Not that I know of at this point, the exponent n (variable) is not easy to deal with, taking the natural log will bring it down to the front which helps a lot.

    • @heeberman
      @heeberman Місяць тому

      @Mathisyourfriend ok thank you!

  • @damose267
    @damose267 9 місяців тому +2

    how can you put the ln inside the limit?

    • @Hewooo39
      @Hewooo39 8 місяців тому +1

      It is just like the other properties of a limit such as constant multiplied by a function, where k is the constant, lim[k•f(x)] = k•lim f(x). You can also do it with logarithms.
      (Please correct me if I am wrong, I self teach myself and I am new to this topic.)

    • @DragonX999
      @DragonX999 8 місяців тому +1

      ​@@Hewooo39 yes its true a limit of a function is the limit of the function as long as the limit is a finite number

  • @林Tsches
    @林Tsches Місяць тому

    thanks😊very clear❤

  • @punisher1503
    @punisher1503 2 місяці тому +1

    good solution bro

  • @rumeysa847
    @rumeysa847 Рік тому +1

    thanks a lot

  • @ChrisMarley-wg7xr
    @ChrisMarley-wg7xr 9 місяців тому

    does this equation have a name? pls answer.....

    • @Mathisyourfriend
      @Mathisyourfriend  9 місяців тому

      Hello, I am not sure if there is a specific name for this limit.

  • @damose267
    @damose267 9 місяців тому

    how can the ln be put inside the limits? pls answer

    • @Mathisyourfriend
      @Mathisyourfriend  9 місяців тому +1

      This is a limit for n approaches infinity which only applies where the n term is; you can have ln either inside the limit or outside the limit because they are the same.

  • @JerryHicks-s2f
    @JerryHicks-s2f 4 місяці тому

    Cronin Camp

  • @francaishaitam6708
    @francaishaitam6708 Рік тому

    good but you just verified that's it's it equal to this lim you didn't proove it from the beggining

    • @Mathisyourfriend
      @Mathisyourfriend  Рік тому

      I believe this is ok because I am proving the left side equals the right side. (1+1/n)^n is given.

    • @francaishaitam6708
      @francaishaitam6708 Рік тому +2

      I am not complaining , I am just trying to search how this number 've been invented I know the 1+1/n problem but how e and ln was defined in this time I wish see the historical pattern somewhere but I couldn't find it . btw your video was awesome

    • @Mathisyourfriend
      @Mathisyourfriend  Рік тому +1

      @@francaishaitam6708 No problem! And thank you!

  • @NihalRaj-xd7jv
    @NihalRaj-xd7jv 11 місяців тому

    This is not thanks time why we use differencition in this even derivative is derive from this equation this is common sence questions do it by your mind

  • @na-gi1xb
    @na-gi1xb 8 місяців тому

    What is lim (2 + 1/n )^n = ?

    • @Mathisyourfriend
      @Mathisyourfriend  8 місяців тому

      Hi, I think the answer is infinity. If you put infinity into n, it is like (2 + 0)^infinity. This is a very very large number.

  • @زكريا_حسناوي
    @زكريا_حسناوي Рік тому +1

    أظن أنّ هناك من يعرّف العدد e بهذه الطريقة:
    lim_(x->∞) [(1+(1/n))^n]
    ومن ثم يستنتجون بقية الخواص لاحقاً، بمعنى آخر، لا تعتبر هذه الخاصية مما يجب برهانه وإنما هي الأساس الذي يتم استنتاج الأشكال الأخرى للعدد e من خلاله

    • @Mathguy1729
      @Mathguy1729 5 місяців тому

      The point of proving lim_(n->∞) (1+1/n)^n = e is that you need to prove that the limit exists, but not divergent to infinity or something. After all that work, you can safely define e as the limit. Of course this video did none of that.