Deriving e from the limit (1+1/x)^x as x approaches infinity

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 44

  • @kongfung3486
    @kongfung3486 10 днів тому

    Excellent class, I can 100% digest the outcome of e, your patience and derive step by step is unbeatable.

  • @Bodyknock
    @Bodyknock 4 дні тому

    1:55 A minor tweak, but once you have limit as x goes to infinity of ln(1+ 1/x) / (1/x) , you can simplify the next step a bit by substituting z = 1/x . Now you are looking at limit at z approaches 0+ of ln(1+z) / z . Using L’Hopital as in the video, the derivatives are now slightly simpler and you get just the limit at z approaches 0+ of 1 / (1 + z) which is 1. So ln y = 1, and y = e.

  • @Ursus-tl5lt
    @Ursus-tl5lt Рік тому +23

    You cant use ln in your proof since ln is based on e and its derivative is based on the results of this theorem.
    The actual proof is complicated and it just proves the limit exists and is between 2 and 3, than it is calculated with taylor approximation

    • @ntlake
      @ntlake Рік тому +2

      Not necessarily. You can define ln(x) without using e at all.

    • @blackapple62
      @blackapple62 Рік тому +5

      @@ntlake How exactly can you do this? Using the natural logarithm quite literally means you're using a logarithm of base e.

    • @ntlake
      @ntlake Рік тому +6

      @@blackapple62 well, in more advanced mathematics the natural logarithm log(x) is often defined as the integral from 1 to x of dt/t. Then you prove that it's also the inverse function of exp(x).

    • @the.lemon.linguist
      @the.lemon.linguist 5 місяців тому

      @@ntlakeexactly
      you can do it by figuring it out as an area function or antiderivative of 1/x

  • @prakashlakhapate1598
    @prakashlakhapate1598 8 місяців тому +12

    You can not use natural logarithm as E is to be proved. Dhanyavad

    • @El0melette
      @El0melette 6 місяців тому +3

      you can if you define lnx as the integral from 1 to x of 1/t dt, and define e as the point where ln(x)=1.

  • @isabellamichalek7705
    @isabellamichalek7705 6 місяців тому +1

    hello, thank you for your video, but I am confused about how you canceled the -1/x^2.

  • @thedeathofbirth0763
    @thedeathofbirth0763 11 місяців тому

    Awesome explanation!

  • @jamesharmon4994
    @jamesharmon4994 9 місяців тому

    What I'd be interested in knowing is what happens if 1/x is replaced by 2/x, or 3/x. Since the given formula converges and one factor is being multiplied by a constant, the new formula should also converge.

  • @JacobMuchebve
    @JacobMuchebve 3 місяці тому

    🤝🤝🤝🤝🤝❤️

  • @AlexKurian-z1s
    @AlexKurian-z1s Місяць тому

    thanks man, you rock!

  • @DB-lg5sq
    @DB-lg5sq 3 місяці тому

    شكرا لكم على المجهودات.

  • @wyboo2019
    @wyboo2019 2 роки тому +4

    but isn't this limit the definition of e? or are you using the infinite polynomial definition of e^x

  • @DamienBlt
    @DamienBlt Рік тому +1

    I understood all, but at the beguining, why there is (let y) what meaning ?, and what ln y = lim.....

    • @lubanlatif3713
      @lubanlatif3713 Рік тому +2

      Basically, he assigned "y" to the equation as a variable. Therefore, we assumed that "y" equaled the whole equation. In the case of (ln y = lim), we multiplied both sides with "ln" (excluding the limit). Later, he explained it in more detail.

    • @DamienBlt
      @DamienBlt Рік тому

      @@lubanlatif3713 ok thanks !

  • @sweetworldismine
    @sweetworldismine 2 роки тому +6

    I just discovered your channel. You are doing a wonderful job. Do you have a Whatsapp or telegram group for Jss1 student's mathematics

  • @upalsengupta5878
    @upalsengupta5878 8 місяців тому

    Excellent

  • @РусскийПатриотЯша
    @РусскийПатриотЯша 6 місяців тому

    Idk, there was a n easier method imo, where by using log properties and mclaurin you not only simplify the process but also save up time.

  • @swayamjain4
    @swayamjain4 Місяць тому

    swayammmmmmmmmm

  • @Osirion16
    @Osirion16 2 роки тому +3

    Very cool thank you

  • @prakashlakhapate1598
    @prakashlakhapate1598 8 місяців тому

    Binomial expansion formula need to be used because e is to be proved.

  • @AbhilashKhuntia
    @AbhilashKhuntia Рік тому

    I am getting stuck like why are we cancelling -1/x^2 won't those two be equal to 0 and we cannot cancel 0 terms like that
    Please correct me if I am wrong

    • @nychan2939
      @nychan2939 Рік тому +1

      You can cancel equal non-zero factors from the numerator and denominator. They may be small but mustn't be zero. You can't do the cancellation if both are zero. This is the main idea in limit evaluation.

  • @willyprophete5750
    @willyprophete5750 9 місяців тому

    logy = 1 and then y = 10 or lim xlog(1+1/x) = 10 when x is very bigger

  • @willyprophete5750
    @willyprophete5750 9 місяців тому

    What will happen if base is 10? ( Then we have log 10 = 1 )

  • @adw1z
    @adw1z Рік тому +1

    ln == log base e , and e is defined by this limit, so nothing was achieved other than showing consistency - there is no need to prove anything, as the definition of e itself is the limit

    • @ntlake
      @ntlake Рік тому +2

      Nope. e isn't defined by this limit, it's defined by the limit as n approaches infinity of (1+1/n)ⁿ

    • @adw1z
      @adw1z Рік тому +1

      @@ntlake that’s the exact same thing?? Using n,x,α,γ,.. whatever letter u want doesn’t matter as it is a dummy variable
      And if u mean n as in natural number or discrete limit, it doesn’t matter as the limiting function is continuous anyways, the discrete and continuous limits must agree

    • @ntlake
      @ntlake Рік тому

      ​@@adw1z yeah, but no. The definition of e is the limit of a sequence, then it being equal to the limit of the function is something you have to prove.
      Anyway, I can define e without using this limit if you want.

    • @adw1z
      @adw1z Рік тому

      @@ntlake the proof follows trivially directly from the definition of continuity of a function, but I’d be interested in seeing your other definition

    • @ntlake
      @ntlake 11 місяців тому

      @@adw1z sorry, missed the notification. the fact that the proof is trivial doesn't change the fact that it isn't its definition.
      Anyway the other definition is e = 1/0! + 1/1! + 1/2! + 1/3! + ...

  • @valentin8982
    @valentin8982 Рік тому

    awesome