Limit at infinity of exponential function

Поділитися
Вставка
  • Опубліковано 8 січ 2025

КОМЕНТАРІ • 159

  • @junchen9954
    @junchen9954 Рік тому +174

    I feel like I'm watching Bobb Rosss but it's the math edition.

    • @spudmcdougal369
      @spudmcdougal369 Рік тому +5

      Hahaha Or Mr. Rogers does math.

    • @JSSTyger
      @JSSTyger Рік тому +4

      "Over here we have some happy little limits."

    • @JSSTyger
      @JSSTyger Рік тому +1

      Outstanding leszon.

  • @jeffjones3287
    @jeffjones3287 Рік тому +48

    I love your calm, methodical, and understandable approach to teaching math skills! Thank you for the time and effort you put into these videos. these are great resources for students.

  • @dougaugustine4075
    @dougaugustine4075 Рік тому +25

    It's enjoyable to watch somebody take so much pleasure in doing and teaching math. It makes it so much more interesting!

  • @johnalan8287
    @johnalan8287 3 місяці тому +3

    My dear friend, after 100 years, people will still be watching your videos to learn calculus. You are so involved in your delivery, sharing and excellent in your concepts.

  • @cherryisripe3165
    @cherryisripe3165 Рік тому +11

    I’m always pleasantly impressed by the love you have to teach mathematical skills, by your large scale knowledge field, by your calm and your pedagogy. By the way, I’ve always studied mathematics in French but I must recognise that I understand every subtility of your langage because your prononciation is agreeable and clear. Thanks so much for the effort you do to make mathematics so abordable and so easy.

  • @Charky32
    @Charky32 Рік тому +5

    sir you explain it very simply, thank you

  • @FELISCATY
    @FELISCATY 8 місяців тому

    I found your video randomly and found it that your teaching way is unique and started to watch regularly ❤

  • @carloruiz2228
    @carloruiz2228 4 місяці тому

    Nice handwriting, clear explanation and a smooth pace. Nicely done!

  • @ayssinaattori9313
    @ayssinaattori9313 Рік тому +4

    Just found your channel, been loving the videos

  • @BlueSiege01
    @BlueSiege01 Рік тому +7

    Thank you Sir for these videos!

  • @ericabaez3033
    @ericabaez3033 7 місяців тому

    Gosh, this video is so refreshing. I love it.

  • @FELISCATY
    @FELISCATY 8 місяців тому

    We will never stop learning
    You never stop teaching ❤

  • @farkliyahya
    @farkliyahya Рік тому +2

    ur shirt is definitly amazing i like it and your way of explaining

  • @mitchelllevine5664
    @mitchelllevine5664 Рік тому +1

    The world’s most lovable math teacher! The anti-Nash.

  • @arungosavi5698
    @arungosavi5698 11 місяців тому

    If this is a problem to be solved in an exam
    We will need you to print me at each step.
    Great solution with logical explanation.
    Love to learn more with you❤

  • @xgx899
    @xgx899 Місяць тому

    For anyone who knows the subject, this is a one-liner: log(x^3+1/x^3)=log x^3(1+x^{-6})=3log x+1/x^6+o(x^{-12}). After dividing by x, this tends to 0. By continuity argument, the answer is 1.

  • @mouraodomangua3488
    @mouraodomangua3488 11 місяців тому

    Hello from Brazil, like ur channel very much I’m civil Engineering student 🤝

  • @rcborges
    @rcborges Рік тому +6

    I was thinking of a more simplistic approach. As x goes to infinity the term 1/x^3 goes to zero and then the limit could be reduced to lnx^3/x, which translates to 3*lnx/x. As the lnx functions grows slower than any polynomial function the limit goes to zero and therefore the overall limit is 1. Is this way of thinking applicable?

  • @GodwinSichone
    @GodwinSichone Місяць тому

    You have made my work easier sir 😁😉

  • @cherryisripe3165
    @cherryisripe3165 Рік тому +4

    Instead of using L’H rule, we could factor out x^3 inside (x^3+1 /x^3 and then use logarithm and the limite of lnx/x which is 0 when x approaches to the Infinity . So we get the same result.

  • @Michaeladjei001
    @Michaeladjei001 10 місяців тому

    What kind of teacher are you? 😮 Your teachings are always amazing ❤🎉 Keep it up.❤

  • @pt3076
    @pt3076 Рік тому +4

    Hi there, it has a much simpler solution, since as X approaches towards infinity the term 1/x^3, becomes 0, therefore it'll be simplified to find the lim of [(X^3)]^(1/x) when X approaches to infinity. That is equal to lim x^(3/x) , and in turn it is equal the lim of x^0 as X approaches the infinity, therefore it's equal to "1".

    • @salvatorecosta875
      @salvatorecosta875 Рік тому +4

      No! For istance lim(x→∞)((1+1/x)^x =e not equal to lim(x→∞)⁡(1)^x=1

    • @jesemepardens9151
      @jesemepardens9151 Рік тому +1

      ​​@@salvatorecosta875The indeterminate form is 1^∞, but not ∞^0

    • @wavingbuddy3535
      @wavingbuddy3535 11 місяців тому

      unfortunately that is an indeterminate form can't have ∞^0

  • @OnaMatsaseng
    @OnaMatsaseng 7 місяців тому

    This is so well explained! Thank you so much 😇

  • @pianoplayer123able
    @pianoplayer123able 6 місяців тому

    Can't believe that I solved that completely on my own and did everything right!

  • @nicolasb11
    @nicolasb11 4 місяці тому

    WELL DONE PRIME NEWTON BRAVO !

  • @feedshark
    @feedshark Рік тому +2

    loved your infinity t shirt

  • @golddddus
    @golddddus 11 місяців тому

    6:36 Instead of multiplying by x^4 it is simpler to immediately divide limit by x^2. Then lim x->inf (3-3/x^6)/(x+1/x^5)=3/inf=0. By the way, it avoids the confusion of the 0-0 sign.
    4.26 The left limit is unnecessary. lim x->inf ln(y)= ln(y).😎

  • @diegosantosdeoliveira9929
    @diegosantosdeoliveira9929 11 місяців тому

    loved your approach man!btw at 6:25 when you applied L'hopital's rule and realized you needed to use some algebraic manipulation to evaluate the limit, if you kept applying L'Hopital 's rule until it was possible to evaluate the limit would you get the right answer?I mean, it's not that practical, but I'm just curious

  • @doctorb9264
    @doctorb9264 Рік тому +2

    Clear and excellent job !

  • @naklisahajgrover
    @naklisahajgrover Рік тому +7

    Is academic crush a thing? Cuz i think i have one of this guy

  • @Khaidullah-q8y
    @Khaidullah-q8y Рік тому +1

    Your are the best sir

  • @henry_dschu
    @henry_dschu 11 місяців тому

    Nice, like the way you do the maths, and your enthusiasm ❤🎉😊

  • @AnaGarcia-lh4mm
    @AnaGarcia-lh4mm 2 місяці тому

    the shirt is FYE!!! 🔥🔥

  • @jannowak9052
    @jannowak9052 Рік тому

    Koszulka jest świetna. Z chęcią zakupię.

  • @alpmuslu3954
    @alpmuslu3954 Рік тому +2

    Love your work!

  • @РусскийПатриотЯша
    @РусскийПатриотЯша 11 місяців тому +1

    You mate are the reason I started to like calculus, and quite frankly you’re the reason I believe I can make it and become an engineer (although a manager one cause I still like money more than math 😂)

  • @vishalmishra3046
    @vishalmishra3046 3 місяці тому

    Here 1 / x^3 tends to 0. so, result = [ x^(1/x) ]^3 = 1^3 = 1.
    (1 + zero) ^ infinity = e^constant but infinity ^ zero = 1 in the normal case of x and 1/x being infinity and zero.
    In this problem, powers of 1/x don't matter since they don't play any material role and all powers of x^(1/x) are powers of 1 = 1. So power of 3 also does not play any role.
    *General Rule* (X^n + X^-m)^(c/X) will tend to 1 for all positive integers m, n, c with X tending to infinity.

  • @AhmedIsmail-z4i
    @AhmedIsmail-z4i 5 місяців тому

    Great explanation ❤ , please make videos on convergence and divergence of infinite series

  • @juliovasquezdiaz2432
    @juliovasquezdiaz2432 Рік тому +2

    PROFESOR, UN GUSTO SALUDARLE. EN EL MINUTO 6.34 DERIVA EL LOGARITMO, PERO LA X DEL DENOMINDOR NO SE DERIVA ?. POR FAVOR SU COMENTARIO. AGRADECIDO POR LOS VIDEOS. SALUDOS DESDE PERU.

  • @wolfix20021
    @wolfix20021 Рік тому +1

    Never stop learning to infinity!!!

  • @kamumbai
    @kamumbai Рік тому

    explained very well. Thank you.

  • @michaelbaum6796
    @michaelbaum6796 Рік тому

    Very good example great👍

  • @gkeic
    @gkeic Рік тому +5

    Where can I get this T-shirt?

  • @david-j8i4m
    @david-j8i4m 11 місяців тому

    Everyting raised to the power of 0 IS one 🎉🎉

  • @o-hogameplay185
    @o-hogameplay185 11 місяців тому

    just a question:
    we can reorder it in a root format, where we get the y=inf'th root of (x^3+1/x^3). since y is not exponential, and (x^3+1/x^3)>=1 when x->inf, i can easily see, that the inf'th root of y is 1 when x->inf.
    or am i missing something?

  • @dunerelaxtube4929
    @dunerelaxtube4929 11 місяців тому +1

    Very elegant

  • @AbouTaim-Lille
    @AbouTaim-Lille 10 місяців тому

    The Ln function tends, if we can say, so "weakly" to the infinity, compared to X and actually the x is faster than ln |p(n,x )| for any polynomial of any fixed degree n. And for sufficiently large X , the inequality X> ln | p(n,X)| holds.

  • @novierjohnabdallahyousefebrahe
    @novierjohnabdallahyousefebrahe 10 місяців тому

    You are doing well !!

  • @ВикторПоплевко-е2т
    @ВикторПоплевко-е2т 5 місяців тому +1

    11:50 almost like this limit ultimately has won

  • @eustacenjeru7225
    @eustacenjeru7225 8 місяців тому

    This is brilliant

  • @jharp49
    @jharp49 8 місяців тому +1

    I liked your shirt.

  • @surendrakverma555
    @surendrakverma555 10 місяців тому

    Very good. Thanks 🙏

  • @tomasbeltran04050
    @tomasbeltran04050 11 місяців тому

    You may write e^y at ðe beginning so you don't forget. Just in case

  • @WagesOfDestruction
    @WagesOfDestruction 9 місяців тому

    A simpler solution is to say as x-> infinite => y = (x^3) ^(1/x) = x^(3/x) from inspection as x-> infinite y=1, if you want to use L"H you can say y=x^(3/x) so ln(y)= (3/x) * ln (x) now do L"H and so you get (1/x) /1 or 1/x as x-> infinite ln(y)=0 => y=1

  • @peta1001
    @peta1001 Рік тому

    Quite often mathematics gets to a solution by applying a convenient (not necessarily true) assumption. Here it seems to be an assumption that (x) = (x+3) when x becomes infinite. If you imagine that any weight that we cannot express, measure or weigh is the same or equal to infinite, we make a mistake. A heavier rock is always heavier than a lighter one, no matter how small the difference in weight is.

  • @KazACWizard
    @KazACWizard 10 місяців тому

    indeed a nice solution. however wouldn't the same logic be applied to what you said about the limit to the exponential? i rewrote the inside as e^(1/x)(ln(x^3+1/x^3)) and then put the limit into the exponent because exponential of base e if limit exists, exists for all exponents. then evalueate limit. i got zero too via the same method as you. then just replace that with e^0 and then of course you get 1.

  • @lateefkareem
    @lateefkareem Рік тому

    Nice one. can you take the limit as x approaches 0? The result of that is more fun and unexpected

  • @capablancasqueen7574
    @capablancasqueen7574 Рік тому +1

    Sir, I'm in love with you!

  • @meditatingcow5113
    @meditatingcow5113 9 місяців тому +1

    Hey can you have a look at this
    lim(x->♾️)[4^n+5^n]^1/n
    ?

  • @pizza8725
    @pizza8725 10 місяців тому +1

    I knew that it would be 1 bc x³+1÷x^3 when it's infinity is really just x^3 and bc 1÷x would outgtow x^3 really fast so it's really just x^1÷x and that is 1(when x is aproching infinity)

  • @ISAACMAJEME
    @ISAACMAJEME 2 місяці тому

    Actually perfect.

  • @PauloDacosta-s1s
    @PauloDacosta-s1s 11 місяців тому

    Can you not solve this limit without use L’Hospital? It is strange because I thought that limit was developed before limit so how Euler solve determine his number??

  • @artandata
    @artandata 4 місяці тому

    I don't know but as soon as I realized that the expression is raised to 1/x, I thought in a very very large number raised to that power and to me the answer was 1 similarly as x tends to infinity the limit should be 1.

  • @KhadidjaSebaa-t4e
    @KhadidjaSebaa-t4e Рік тому

    Wow it's so good

  • @gamingstudio7103
    @gamingstudio7103 Рік тому

    I transformed it into and exponential and then I neglected the 1 before the x^6 and I got the same result. Is it right ?

  • @OpPhilo03
    @OpPhilo03 Рік тому

    I am solve limit any questions by Infinite Countability 😊. Some times I am wrong but most of the time my right.

  • @Anmol_Sinha
    @Anmol_Sinha Рік тому

    How did you use Lhopital? It only works when you have a 0/0 indeterminate form right?

    • @Anmol_Sinha
      @Anmol_Sinha Рік тому

      But we will still get 1 if we use the property of logs + it's taylor expansion to solve it

    • @PrimeNewtons
      @PrimeNewtons  Рік тому +6

      I used to think so too, but 0/0 is also inf/inf. So it works for both. Never Stop Learning!

    • @Anmol_Sinha
      @Anmol_Sinha Рік тому +1

      @@PrimeNewtons cool! And thanks

    • @junchen9954
      @junchen9954 Рік тому

      It's not like it only works for 0/0 or inf/inf but these are the only two situations for which the differentiation would be necessary. If either the denominator or the numerator was neither zero or inifinity then you would have already got the result you were looking for, so you differentiate the expressions on both sides till you get a result as such. E.g if the denominator was zero and the nominator wasn't then clearly the limit would be infinity so there would be no need to further differentiate the equation. You wouldn't need to differentiate an equatoin whose target limit is 2/0 coz you would know the limit would be ∞. L'H rule works for all cases except the target result only practically means something to you when the target value isn't 0/0 or inf/inf.

    • @Anmol_Sinha
      @Anmol_Sinha Рік тому

      @@junchen9954 uhmm.. the derivation of lhopital comes by assuming a 0/0 form (or inf/inf). So I don't think that it will apply to other cases. (The proof is in 3b1b calculus playlist if you are interested)

  • @kaktusas1968
    @kaktusas1968 11 місяців тому

    Don't we immediately see that a parenthesis to the zeroth power will be equal to one?

  • @BinethMinthusa
    @BinethMinthusa 10 місяців тому

    🙏 Thank you Sir

  • @hermannkengni
    @hermannkengni 8 місяців тому

    but sir where is the natural log taken at the function

  • @the_warpig1919
    @the_warpig1919 Рік тому

    All I can say is: Wow.

  • @yogarasaponniah8586
    @yogarasaponniah8586 Рік тому +1

    Substitute a large valve for x ,Example x=1000
    You will get the answer 1

  • @WePhFr
    @WePhFr Рік тому

    If I draw a graph of that function I see the value of 2 as the limit goes to infinity. Where is the mistake?

    • @WePhFr
      @WePhFr Рік тому

      I was wrong - must go farther than some hundred to see the Limit of 1...

  • @cliffordabrahamonyedikachi8175
    @cliffordabrahamonyedikachi8175 11 місяців тому

    Simply substitute x as infinity.knowing that infinity to the power of 3 . It equals( 2)^1/1.
    This is 2.

  • @yvngrxxd9078
    @yvngrxxd9078 Рік тому

    i just learned limits 2 days ago so someone please tell me if i did something horrendously wrong 💀💀💀💀:
    let y = x^3 + 1/x^3
    so lim x -> ∞
    (y)^1/x
    so x for infinity is a number that keeps getting bigger and bigger
    and (y)^0= 1
    so the answer is just 1?

    • @imshiruba
      @imshiruba 6 місяців тому +1

      The y approaches infinity which leaves us with an indeterminate form of limit, infinity^0. But honestly tho, you did pretty good for the first 2 day of limits

  • @265user
    @265user Рік тому

    Is it wrong to just raise infinity to zero and say its 1? Since any numbers raised to zero is 1

    • @Kraken-lm1cx
      @Kraken-lm1cx Рік тому

      Nah, infinity is not a number. Also the case of anything to the zero being 1 isn't always true as 0^0 is a counterexample

    • @helm36
      @helm36 Рік тому

      What?0^0 is 1, it's not a counterexample

    • @Kraken-lm1cx
      @Kraken-lm1cx Рік тому +1

      0^0 is not one always. If you look at the function x^0 it seems 0^0 will be one but if you look at the function 0^x it seems to the value will be 0@@helm36

    • @helm36
      @helm36 Рік тому

      @@Kraken-lm1cx function x^x as x approaches 0 equals 1. For example you take 10e-10 to the power of 10e-10 it will be pretty close to 1

    • @helm36
      @helm36 Рік тому

      @@Kraken-lm1cx yeah 0^x as x approaches 0 is not 1, but 0^0 being 1 is basically a math rule due to the reason I mentioned above

  • @karimkemo5786
    @karimkemo5786 4 місяці тому

    But u can tell that limit approaches 1 from the exponent. Because the exponent is 0.

  • @josleurs4345
    @josleurs4345 Рік тому

    I would say that it can be easier ... ( X^3 + 1/X^3 ) ^(1/x) the second term in the sum goes to zero ... so left ( x ^ 3 ) ^( 1/x ) ... x ^ ( 3/x ) and then ln en de l hopital is easier ....

  • @angelavitaliano5200
    @angelavitaliano5200 11 місяців тому

    Occorre specificare che la variabile reale x ,tende a + infinito ; la funzione a valori reali di cui si vuole calcolare il limite , non è definita per tutti i valori di x negativi.

  • @jamesmorton5017
    @jamesmorton5017 11 місяців тому

    Anynumber to the power of 0 is 1?

  • @北冥有魚-k2m
    @北冥有魚-k2m 10 місяців тому

    Using ln(ab) and L.H. , gives
    lnY=0, and so Y=1 as x→∞

  • @josleurs4345
    @josleurs4345 Рік тому

    why do we not use just a calculator or spreadsheet , just to get a feeling ..., that is the way I explain it to my children ...because de l hopital is tricky because of the conditions of it ...

  • @FrancisHealy-w9f
    @FrancisHealy-w9f Рік тому +1

    This is an example of a incredibly complicated description of a trivial result. The "+1/x^3" could not possibly make a difference since this quantity goes to zero. The problem reduces to proving (x^3)^(1/x) goes to zero as x goes to infinity. Taking logs we get (3/x)log(x). Everyone knows that Log(x)/x goes to zero as x goes to infinity. So this could be proved in about 30 seconds.

  • @thaerthaer1120
    @thaerthaer1120 7 місяців тому

    There is no need for all of this, generally anything, to power zero equal to one ,so from the beginning, we have infinity to power zero, which is equal to one

  • @OludeleJacob
    @OludeleJacob Рік тому

    I love this

  • @chukwudisimere8463
    @chukwudisimere8463 Рік тому

    Beautifully done

  • @nikko2505
    @nikko2505 Рік тому

    It is much easier to do without L'Hopital's rule. Through the sum of cubes

  • @maciejterakowski9062
    @maciejterakowski9062 11 місяців тому

    The result I found in 6 sec.

  • @Tim-Kaa
    @Tim-Kaa Рік тому

    Nice

  • @amdedemeke2544
    @amdedemeke2544 6 місяців тому

    infinity to the power of zero is 1

  • @gabonviper5426
    @gabonviper5426 8 місяців тому

    Isn’t it obvious from the beginning, that the limit is 1? If you look at the initial expression, it is clear that it is like “something” to the 0 degree. So, what ever is “inside” the brackets, whole expression is in zero degree. Anything in 0 degree equals 1. 🤔

  • @pelasgeuspelasgeus4634
    @pelasgeuspelasgeus4634 Рік тому

    Try graphing it desmos and you will see that the limit is 0 and not 1.

  • @KahlieNiven
    @KahlieNiven 5 місяців тому

    from quick calculation by head, I also found limit = 1 ..in less than 5 seconds
    x^3 + 1/x^3 -> x^3 when x -> infinite
    (X^3)^(1/x) = x^(3/x)
    3/x -> 0 and exponential part prevails upon exponented part so -> x^0 = 1
    I agree, it's dirty.
    .. a good formal proof will always remain better.

  • @NwankwoBeloved
    @NwankwoBeloved Рік тому

    Please am confused 😢

  • @Eleven_keyz
    @Eleven_keyz Місяць тому

    Already 2025 and still struggling

  • @rahleigh5829
    @rahleigh5829 Рік тому

    Let x = 99999999
    And you will get
    1.000000553
    Approx. = 1

  • @rushhourgaming
    @rushhourgaming Рік тому +1

    Ok let me teach you shortcut to find limit to solve easily any question
    For infinity put x=999999 digits as much you want
    For 0 put 0.00001 more digits more accurate answer same for other numbers
    Now if we see this question
    (9999999³+(1/999999³))^(1/999999)
    So it becomes (9999999999......)⁰
    As we know a⁰=1
    Thus answer is 1
    This trick almost work for all questions and if it's MCQ question it's fastest way to find your answer

    • @Ichigo-gp9vq
      @Ichigo-gp9vq Рік тому

      I'll make sure to use this in exams

    • @SpicyGregPowers
      @SpicyGregPowers Рік тому

      of course this is great for mcqs but when it comes to a 6 marker written method then you will unfortunately have to learn how limits actually work 😂

    • @265user
      @265user Рік тому

      He said infinity raised to zero it's undefined... Can someone clarify this am lost

    • @rushhourgaming
      @rushhourgaming Рік тому

      ​@@265userwell infinity also no so anything power to 0 is 1
      But in case of 0⁰ there are different answer
      Like anything power to 0 is 1
      0 to power anything is 0
      so it's undetermined

    • @rushhourgaming
      @rushhourgaming Рік тому

      ​@@SpicyGregPowersyaah but you can use it to cross check your answer
      But in MCQ it is very helpful

  • @coolgameplays1454
    @coolgameplays1454 Рік тому

    easy

    • @coolgameplays1454
      @coolgameplays1454 Рік тому

      just get rid of 3/x^4 and 1/x^3 beacause x goes to infinity then theses fractions is 0 then you can simplify by 3x^2/x^3=3/inf=0

  • @eiseks3410
    @eiseks3410 Рік тому +1

    The dislike button is not enough

  • @TheLukeLsd
    @TheLukeLsd 11 місяців тому

    let k= 1/x so the L= lim k--> 0 (k³+1/k³)^k = 1.